

AKTU B.E./B.Tech CIVIL Sem 3 syllabus

SENSOR AND INSTRUMENTATION

KOE034/044 SENSOR AND INSTRUMENTATION

Unit- I: Sensors & Transducer: Definition, Classification & selection of sensors, Measurement of displacement using Potentiometer, LVDT & Optical Encoder, Measurement of force using strain gauge, Measurement of pressure using LVDT based diaphragm & piezoelectric sensor.

Unit-II: Measurement of temperature using Thermistor,
Thermocouple & RTD, Concept of thermal imaging, Measurement of
position using Hall effect sensors, Proximity sensors: Inductive &
Capacitive, Use of proximity sensor as accelerometer and vibration
sensor, Flow Sensors: Ultrasonic & Laser, Level Sensors: Ultrasonic
& Capacitive.

Unit -III: Virtual Instrumentation: Graphical programming techniques, Data types, Advantage of Virtual Instrumentation techniques, Concept of WHILE & FOR loops, Arrays, Clusters & graphs, Structures: Case, Sequence & Formula nodes, Need of software based instruments for industrial automation.

Unit-IV: Data Acquisition Methods: Basic block diagram, Analog and Digital IO, Counters, Timers, Types of ADC: successive approximation and sigma-delta, Types of DAC: Weighted Resistor and R-2R Ladder type, Use of Data Sockets for Networked Communication.

Unit V: Intelligent Sensors: General Structure of smart sensors & its components, Characteristic of smart sensors: Self calibration, Self-testing & self-communicating, Application of smart sensors: Automatic robot control & automobile engine control.

Text Books:

- 1. DVS Murthy, Transducers and Instrumentation, PHI 2nd Edition 2013
- 2. D Patranabis, Sensors and Transducers, PHI 2nd Edition 2013.
- 3. S. Gupta, J.P. Gupta / PC interfacing for Data Acquisition & Process Control, 2nd ED / Instrument Society of America, 1994.
- 4. Gary Johnson / Lab VIEW Graphical Programing II Edition / McGraw Hill 1997.

Reference Books:

- 1. Arun K. Ghosh, Introduction to measurements and Instrumentation, PHI, 4th Edition 2012.
- 2. A.D. Helfrick and W.D. cooper, Modern Electronic Instrumentation & Measurement Techniques, PHI - 2001
- 3. Hermann K.P. Neubert, "Instrument Transducers" 2nd Edition 2012, Oxford University Press.

Universal Human Values And Professional Ethics

KVE401 Universal Human Values and Professional Ethics

UNIT-1 Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Understanding the need, basic guidelines, content and process for Value Education, Self-Exploration-what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration, Continuous Happiness and Prosperity- A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario, Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

UNIT-2 Understanding Harmony in the Human Being -

Harmony in Myself: Understanding human being as a co-existence of the sentient 'I' and the material 'Body', Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer), Understanding the characteristics and activities of 'I' and harmony in 'I', Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.

UNIT-3 Understanding Harmony in the Family and Society-Harmony in Human-Human Relationship: Understanding harmony in the Family- the basic unit of human interaction, Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) as the foundational values of relationship, Understanding the meaning of Vishwas; Difference between intention and competence, Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, Understanding the harmony in the society (society being an extension of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals, Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family!.

UNIT-4 Understanding Harmony in the Nature and Existence - Whole existence as Co-existence: Understanding the harmony in the Nature, Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature, Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all-pervasive space, Holistic perception of harmony at all levels of existence.

UNIT-5 Implications of the above Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values, Definitiveness of Ethical Human Conduct, Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order, Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) At the level of society: as mutually enriching institutions and organizations.

Text Books:

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

References:

- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA
- 2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
- 3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 4. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 5. A Nagraj, 1998, Jeevan Vidya Ek Parichay, Divya Path Sansthan, Amarkantak.
- 6. P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 7. A N Tripathy, 2003, Human Values, New Age International Publishers.
- 8. SubhasPalekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) KrishiTantraShodh, Amravati.
- 9. E G Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press
- 10. M Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 11. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books.
- 12. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

Mathematics-IV (PDE, Probability And Statistics)

KAS302/KAS402 Mathematics-IV (PDE, Probability and Statistics)

Module I: Partial Differential Equations

Origin of Partial Differential Equations, Linear and Non Linear Partial Equations of first order, Lagrange's Equations, Charpit's method, Cauchy's method of Characteristics, Solution of Linear Partial Differential Equation of Higher order with constant coefficients, Equations reducible to linear partial differential equations with constant coefficients.

Module II: Applications of Partial Differential Equations:

Classification of linear partial differential equation of second order, Method of separation of variables, Solution of wave and heat conduction equation up to two dimension, Laplace equation in two dimensions, Equations of Transmission lines.

Module III: Statistical Techniques I:

Introduction: Measures of central tendency, Moments, Moment generating function (MGF), Skewness, Kurtosis, Curve Fitting, Method of least squares, Fitting of straight lines, Fitting of second degree parabola, Exponential curves, Correlation and Rank correlation, Regression Analysis: Regression lines of y on x and x on y, regression coefficients, properties of regressions coefficients and non linear regression.

Module IV: Statistical Techniques II:

Probability and Distribution: Introduction, Addition and multiplication law of probability, Conditional probability, Baye's theorem, Random variables (Discrete and Continuous Random variable) Probability mass function and Probability density function, Expectation and variance, Discrete and Continuous Probability distribution: Binomial, Poission and Normal distributions.

Module V: Statistical Techniques III:

Sampling, Testing of Hypothesis and Statistical Quality Control: Introduction, Sampling Theory (Small and Large), Hypothesis, Null hypothesis, Alternative hypothesis, Testing a Hypothesis, Level of significance, Confidence limits, Test of significance of difference of means, T-test, F-test and Chi-square test, One way Analysis of Variance (ANOVA). Statistical Quality Control (SQC), Control Charts, Control Charts for variables (X and R Charts), Control Charts for Variables (p, np and C charts).

Text Books

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley & Sons, 2006.
- 2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003(Reprint).
- 3. S. Ross: A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.

Reference Books

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers,

- 35th Edition, 2000.
- 2.T.Veerarajan : Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi.
- 3. R.K. Jain and S.R.K. Iyenger: Advance Engineering Mathematics; Narosa Publishing House, New Delhi.
- 4. J.N. Kapur: Mathematical Statistics; S. Chand & Sons Company Limited, New Delhi.
- 5. D.N.Elhance, V. Elhance & B.M. Aggarwal: Fundamentals of Statistics; Kitab Mahal Distributers, New Delhi.

Technical Communication

(KAS301/401) Technical Communication

Unit -1 Fundamentals of Technical Communication:

Technical Communication: Features; Distinction between General and Technical Communication; Language as a tool of Communication; Dimensions of Communication: Reading & comprehension; Technical writing: sentences; Paragraph; Technical style: Definition, types & Methods; The flow of Communication: Downward; upward, Lateral or Horizontal; Barriers to Communication.

Unit - II Forms of Technical Communication:

Technical Report: Definition & importance; Thesis/Project writing: structure & importance; synopsis writing: Methods; Technical research Paper writing: Methods & style; Seminar & Conference paper writing; Expert Technical Lecture: Theme clarity; Analysis & Findings; 7 Cs of effective business writing: concreteness, completeness, clarity, conciseness, courtesy, correctness, consideration, C.V./Resume writing; Technical Proposal: Types, Structure & Draft.

Unit - III Technical Presentation: Strategies & Techniques

Presentation: Forms; interpersonal Communication; Class room presentation; style; method; Individual conferencing: essentials: Public Speaking: method; Techniques: Clarity of substance; emotion; Humour; Modes of Presentation; Overcoming Stage Fear; Audience Analysis & retention of audience interest; Methods of Presentation: Interpersonal; Impersonal; Audience Participation: Quizzes & Interjections.

Unit - IV Technical Communication Skills:

Interview skills; Group Discussion: Objective & Method; Seminar/Conferences Presentation skills: Focus; Content; Style;

Argumentation skills: Devices: Analysis; Cohesion & Emphasis; Critical thinking; Nuances: Exposition narration & Description; effective business communication competence: Grammatical; Discourse competence: combination of expression & conclusion; Socio-linguistic competence: Strategic competence: Solution of communication problems with verbal and non verbal means.

Unit - V Dimensions of Oral Communication & Voice Dynamics: Code and Content; Stimulus & Response; Encoding process; Decoding process; Pronunciation Etiquette; Syllables; Vowel sounds; Consonant sounds; Tone: Rising tone; Falling Tone; Flow in Speaking; Speaking with a purpose; Speech & personality; Professional Personality Attributes: Empathy; Considerateness; Leadership; Competence.

Reference Books

- 1. Technical Communication Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2007, New Delhi.
- 2. Personality Development and Soft Skills by Barun K. Mitra, OUP, 2012, New Delhi.
- 3. Spoken English- A Manual of Speech and Phonetics by R.K.Bansal & J.B.Harrison, Orient Blackswan, 2013, New Delhi.
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma
- & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Practical Communication: Process and Practice by L.U.B. Pandey; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, 2014, Delhi.
- 6. Modern Technical Writing by Sherman, Theodore A (et.al); Apprentice Hall; New Jersey; U.S.
- 7. A Text Book of Scientific and Technical Writing by S.D. Sharma; Vikas Publication, Delhi.
- 8. Skills for Effective Business Communication by Michael Murphy, Harward University, U.S.
- 9. Business Communication for Managers by Payal Mehra, Pearson Publication, Delhi.

ENGINEERING MECHANICS

ENGINEERING MECHANICS KCE301

UNIT - I Introduction to Engineering Mechanics: Force Systems, Basic concepts, Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space - Resultant- Moment of Forces and its Applications; Couples and Resultant of Force System,

Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems. Friction: Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack.

UNIT- II Centroid and Centre of Gravity, Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

UNIT - III Basic Structural Analysis, Equilibrium in three dimensions; Analysis of simple trusses by method of sections & method of joints, Zero force members, Simple beams and support reactions.

UNIT - IV Review of particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique).

UNIT - V Introduction to Kinetics of Rigid Bodies, Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation Virtual Work and Energy Method- Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, Applications of energy method for equilibrium, Stability of equilibrium.

Books and References

- 1. Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall
- 2. F. P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I Statics, Vol II, Dynamics, 9th Ed, Tata McGraw Hill
- 3. R. C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press.
- 4. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press

- 5. Shanes and Rao (2006), Engineering Mechanics, Pearson Education,
- 6. Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education
- 7. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics
- 8. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications
- 9. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co.
- 10. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications
- 11. Strength of Materials by Timoshenko and Yσungs, East West Press.
- 12. Textbook of Applied Mechanics-Dynamics and Statics by Prasad I.B, Khanna Publications.

Surveying and Geomatics

Surveying and Geomatics KCE302

UNIT - I Introduction to Surveying: Definition, Classification, Principles, Survey stations and Survey lines; Introduction to measurement of distance, direction and elevation; Ranging and it methods, Meridians and Bearings, Methods of leveling, Booking and reducing levels, Reciprocal leveling, distance of visible horizon, Profile leveling and cross sectioning, Errors in leveling; Introduction to methods of plane table surveying; Contouring: Characteristics, methods, uses, computation of areas and volumes. Theodolite survey: Instruments, Measurement of horizontal and vertical angle; Methods of horizontal and vertical control, Triangulation: Figures or systems, Signals, Satellite station, Baseline and its importance, corrections, Trigonometric leveling: Accessible and inaccessible objects.

UNIT - II Curves: Elements of simple circular curves, Theory and methods of setting out simple circular curves, Transition curvestypes, characteristics and equations of various transition curves; Introduction to vertical curves.

UNIT - III Modern Field Survey Systems: Principle and types of Electronic Distance Measurement systems and instruments, Total Station- its advantages and applications; Global Positioning Systems-Segments, working principle, errors and biases. Geographic Information System: Concepts and data types, data models, data acquisition. GIS applications in civil engineering. [8 Hours]

UNIT - IV Photogrammetric Survey: basic principles, aerial camera, scale of a vertical photograph, relief displacement of a vertical photograph, height of object from relief displacement, flight planning for aerial photography, selection of altitude, interval between exposures, crab and drift, stereoscope and stereoscopic views, parallax equations. Introduction to digital photogrammetry.

UNIT - V Remote Sensing: Concepts and physical basis of Remote Sensing, Electromagnetic spectrum, atmospheric effects, image characteristics. Remote sensing systems, spectral signatures and characteristics spectral reflectance curves. Salient features of some of Remote Sensing satellites missions. Digital image processing: Introduction, image rectification and restoration, image enhancement, image transformation, image classification. Applications of remote sensing to civil engineering.

Books and References:

- 1. Madhu, N, Sathikumar, R and Satheesh Gobi, Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson India, 2006.
- 2. Manoj, K. Arora and Badjatia, Geomatics Engineering, Nem Chand & Bros, 2011
- 3. Bhavikatti, S.S., Surveying and Levelling, Vol. I and II, I.K. International, 2010
- 4. Chandra, A.M., Higher Surveying, Third Edition, New Age International (P) Limited, 2002.
- 5. Anji Reddy, M., Remote sensing and Geographical information system, B.S. Publications, 2001.
- 6. Arora, K.R., Surveying, Vol-I, II and III, Standard Book House.
- 7. Punmia BC et al: Surveying Vol. I, II, Laxmi Publication
- 8. Chandra AM and Ghosh SK: Remote Sensing and Geographical Information System, Alpha Science
- 9. Ghosh SK: Digital Image Processing, Alpha Science
- 10. Lillesand T M et al: Remote Sensing & Image Interpretation, John Wiley & Sons
- 11. Bhatta B: Remote Sensing and GIS, Oxford University Press, 2008

Fluid Mechanics

Fluid Mechanics KCE303

UNIT I Fluid and continuum, Physical properties of fluids, Rheology of fluids. Pressure-density height relationship, manometers, pressure on plane and curved surfaces, centre of pressure, buoyancy,

stability of immersed and floating bodies, fluid masses subjected to linear acceleration and uniform rotation about an axis.

UNIT II Types of fluid flows: Continuum & free molecular flows. Steady and unsteady, uniform and non-uniform, laminar and turbulent flows, rotational and irrotational flows, compressible and incompressible flows, subsonic, sonic and supersonic flows, subcritical, critical and supercritical flows, one, two and three dimensional flows, streamlines, path lines, streak lines, stream tube, continuity equation for 1-D, 2-D and 3-D flows, circulation, stream function and velocity potential function.

UNIT III Potential Flow: source, sink, doublet and half-body. Equation of motion along a streamline and its integration, Bernoulli's equation and its applications- Pitot tube, orifice meter, venturimeter and bend meter, notches and weirs, momentum equation and its application to pipe bends. resistance to flow, Minor losses in pipe in series and parallel, power transmission through a pipe, siphon, water hammer, three reservoir problems and pipe networks.

UNIT IV Equation of motion for laminar flow through pipes, Stokes' law, mixing length concept and velocity distribution in turbulent flow over smooth and rough surfaces, Boundary layer thickness, boundary layer over a flat plate, displacement, momentum and energy thickness. Application of momentum equation. Laminar boundary layer, turbulent boundary layer, laminar sub-layer, separation and its control. Vortex Flow: Free & Forced. [8 Hours]

UNIT V Drag and lift, drag on a sphere, aerofoil, Magnus effect, Similarity Laws; geometric, kinematics and dynamic similarity, undistorted and distorted model studies, Dimensional analysis, Buckingham's Pi theorem, important dimensionless numbers and their significance. Introduction to Computational Fluid Dynamics (CFD).

Books and References

- 1. Hibbler, "Fluid Mechanics in SI Units" 1/e Pearson Education, Noida.
- 2. Fox & Donald, "Introduction to Fluid Mechanics" John Wiley &Sons Pvt Ltd,
- 3. Cengel & Cimbala, "Fluid Mechanics" TMH, New Delhi.
- 4. Katz, "Introductory Fluid Mechanics" Cambridge University Press
- 5. Pnueli & Gutfinger, "Fluid Mechanics" Cambridge University Press

- 6. Modi & Seth "Hydraulics & Fluid Mechanics" Standard Publications.
- 7. Gupta, "Fluid Mechanics & Hydraulic Machines" Pearson Education, Noida
- 8. Graebel, "Engineering Fluid Mechanics", CRC Press Taylor & Francis Group.
- 9. Janna, "Introduction to Fluid Mechanics" 4/e, CRC Press Taylor & Francis Group.
- 10. AK Jain "Fluid Mechanics" Khanna Publication.
- 11. White, F.M. "Fluid Mechanics" TMH, New Delhi.
- 12. Munsen et al , "Fundamental of Fluid Mechanics" Wiley Newyork Ltd
- 13. Garde, R.J., "Fluid Mechanics", SciTech Publications Pvt. Ltd
- 14. I.H. Shames, "Mechanics of Fluids", McGraw Hill, Int. Student.
- 15. RK Bansal "Fluid Mechanics and Hydraulic Machines" Laxmi Publication
- 16. Jagdish Lal "Fluid Mechanics"
- 17. N Narayan Pillai "Principles of Fluid Mechanics & Fluid Machines" Universities Press.
- 18. Esposito, Fluid Power & Applications" 7/e Pearson Education, Noida.
- 19. DR Malhotra & Malhotra, "Fluid Mechanics Hydraulics & Hydraulic Machines" Satya Prakashan, New Delhi.

Visit www.goseeko.com to access free study material as per your university syllabus