
Aryabhatta	Knowledge	University	(AKU)

Computer	Science	and	Engineering

Object	oriented	programming

Solved	Exam	Paper	2018

	

Question.	What	 are	 the	 different	 data	 types	 in	 C++?	 Explain
that	C++	is	an	object-oriented	language?
Answer:	 All	 variables	 use	 data-type	 during	 declaration	 to	 restrict
the	type	of	data	to	be	stored.	Therefore,	we	can	say	that	data	types
are	used	to	tell	the	variables	the	type	of	data	it	can	store.	Whenever
a	 variable	 is	 defined	 in	C++,	 the	 compiler	 allocates	 some	memory
for	 that	 variable	 based	 on	 the	 data-type	with	which	 it	 is	 declared.
Every	data	type	requires	a	different	amount	of	memory.
	

https://www.geeksforgeeks.org/variables-and-keywords-in-c/


Data	types	in	C++	is	mainly	divided	into	three	types:
1.	 Primitive	 Data	 Types:	 These	 data	 types	 are	 built-in	 or

predefined	 data	 types	 and	 can	 be	 used	 directly	 by	 the	 user	 to
declare	 variables.	 Example:	 int,	 char,	 float,	 bool	 etc.	 Primitive
data	types	available	in	C++	are:	
Integer
Character
Boolean
Floating	Point
Double	Floating	Point
Valueless	or	Void
Wide	Character

2.	 Derived	Data	Types:	 The	 data-types	 that	 are	 derived	 from	 the
primitive	 or	 built-in	 datatypes	 are	 referred	 to	 as	 Derived	 Data
Types.	These	can	be	of	four	types	namely:	
Function
Array
Pointer
Reference

3.	 Abstract	 or	 User-Defined	 Data	 Types:	 These	 data	 types	 are
defined	by	user	itself.	Like,	defining	a	class	in	C++	or	a	structure.
C++	provides	the	following	user-defined	datatypes:	

https://www.geeksforgeeks.org/derived-data-types-in-c/
https://www.geeksforgeeks.org/user-defined-derived-data-types-in-c/


Class
Structure
Union
Enumeration
Typedef	defined	Datatype
Integer:	 Keyword	 used	 for	 integer	 data	 types	 is	 int.	 Integers
typically	 requires	 4	 bytes	 of	 memory	 space	 and	 ranges	 from
-2147483648	to	2147483647.	
Character:	 Character	 data	 type	 is	 used	 for	 storing	 characters.
Keyword	 used	 for	 character	 data	 type	 is	 char.	 Characters
typically	requires	1	byte	of	memory	space	and	ranges	 from	-128
to	127	or	0	to	255.
Boolean:	Boolean	data	type	is	used	for	storing	Boolean	or	logical
values.	A	Boolean	variable	can	store	either	true	or	false.	Keyword
used	for	Boolean	data	type	is	bool.	
Floating	 Point:	 Floating	 Point	 data	 type	 is	 used	 for	 storing
single	precision	floating	point	values	or	decimal	values.	Keyword
used	for	floating	point	data	type	is	float.	Float	variables	typically
requires	4	byte	of	memory	space.
Double	Floating	Point:	Double	Floating	Point	data	type	is	used
for	 storing	 double	 precision	 floating	 point	 values	 or	 decimal
values.	 Keyword	 used	 for	 double	 floating	 point	 data	 type
is	double.	Double	variables	 typically	 requires	8	byte	of	memory
space.	
Void:	Void	means	without	any	value.	Void	datatype	 represents	a
valueless	 entity.	Void	 data	 type	 is	 used	 for	 those	 function	which
does	not	returns	a	value.	
Wide	 Character:	 Wide	 character	 data	 type	 is	 also	 a	 character
data	type	but	this	data	type	has	size	greater	than	the	normal	8-bit
datatype.	 Represented	 by	wchar_t.	 It	 is	 generally	 2	 or	 4	 bytes
long.	

Here	are	 the	 reasons	C++	 is	called	partial	or	 semi	Object	Oriented
Language:

1)	Main	 function	 is	 outside	 the	 class:	C++	 supports	 object-oriented
programming,	but	OO	is	not	intrinsic	to	the	language.	You	can	write	a
valid,	 well-coded,	 excellently-styled	 C++	 program	without	 using	 an
object	even	once.

https://www.geeksforgeeks.org/wide-char-and-library-functions-in-c/


In	 C++,	 main	 function	 is	 mandatory,	 which	 executes	 first	 but	 it
resides	outside	the	class	and	from	there	we	create	objects.	So,	here
creation	 of	 class	 becomes	 optional	 and	 we	 can	 write	 code	 without
using	class.

#include	<bits/stdc++.h>

using	namespace	std;

int	main()

{

				cout	<<	"Hello	World";

				return	0;

}

While	 in	 JAVA,	 main	 function	 is	 executed	 first	 and	 it	 reside	 in	 the
class	which	 is	mandatory.	 So,	we	 can’t	 do	 anything	without	making
Class.	For	doing	the	same	thing	as	above,	we	need	to	make	a	class	as:

class	hello

{

				public	static	void	main	(String	args[])

				{

								System.out.println("Hello	World");

				}

}

2)	 Concept	 of	 Global	 variable:	 In	 C++,	 we	 can	 declare	 a	 variable
globally,	which	can	be	accessible	 from	anywhere	and	hence,	 it	does
not	provides	complete	privacy	to	the	data	as	no	one	can	be	restricted



to	 access	 and	 modify	 those	 data	 and	 so,	 it	 provides	 encapsulation
partially	whereas	 In	 JAVA,	we	can	declare	variable	 inside	class	only
and	we	can	provide	access	specifier	to	it.

#include	<iostream>

Using	namespace	std;

	

//	Global	variable	declaration:

int	g	=	50;

	

int	main	()	

{

				//	global	variable	g

				cout	<<	g;

	

			//	Local	variable	g

			g	=	20;

			cout	<<	g;

	

			return	0;

}

Output:

	



50	20

So,	in	JAVA,	basically	every	data	is	asked	explicitly	by	user	if	it	should
be	accessible	or	not.

3)	 Availability	 of	 Friend	 function:	 Friend	 Class	 A	 friend	 class	 can
access	 private	 and	 protected	members	 of	 other	 class	 in	which	 it	 is
declared	as	friend.	It	is	sometimes	useful	to	allow	a	particular	class	to
access	private	members	of	other	class.

Therefore,	 again	 the	 Object	 oriented	 features	 can	 be	 violated	 by
C++.

	

Question.	 What	 do	 you	 understand	 by	 object	 oriented
programming?	What	are	the	advantages	of	programming	using
object-	oriented	approach?

Answer:	 OOP	 (object-oriented	 programming)	 is	 a	 programming
paradigm	that	is	completely	based	on	‘objects’.	A	general	explanation
of	 ‘object’	 for	better	understanding	 –	Mr.	A	 is	going	 to	build	 a	POT
with	the	use	of	BLOCKS.	Blocks	are	a	kind	of	measurement	units	like
height,	 radius,	 and	 shape	 by	 default.	 These	 properties	 are	 there	 by
default,	 which	 means	 if	 you	 use	 a	 block	 it	 has	 some	 dimensions
associated	with	it.	Now	there	are	some	other	crucial	properties	that
are	not	yet	assigned	like	–	color,	material,	and	price.	So,	Objects	are
nothing	 but	 POTS.	 We	 build	 an	 object	 by	 assigning	 values	 to	 the
properties	when	we	need	them.	BLOCK	is	nothing	but	the	templates
of	 the	 object.	 There	we	write	 how	 the	 object	 should	 appeal	 (means
look	 like)	 and	 how	 the	 actions	will	 take	 place.	 In	 Java,	we	 call	 it	 a
class.

Advantages	of	OOP

Moving	to	the	advantages	of	OOP,	we	would	like	to	say	that	there	are
many	 as	 this	 is	 one	 of	 the	 core	 development	 approaches	 which	 is



widely	accepted.

1.	Re-usability

It	 means	 reusing	 some	 facilities	 rather	 than	 building	 it	 again	 and
again.	This	is	done	with	the	use	of	a	class.	We	can	use	it	‘n’	number	of
times	as	per	our	need.

2.	Data	Redundancy

This	is	a	condition	created	at	the	place	of	data	storage	(you	can	say
Databases)	 where	 the	 same	 piece	 of	 data	 is	 held	 in	 two	 separate
places.	So	the	data	redundancy	 is	one	of	the	greatest	advantages	of
OOP.	If	a	user	wants	a	similar	functionality	in	multiple	classes	he/she
can	 go	 ahead	 by	 writing	 common	 class	 definitions	 for	 the	 similar
functionalities	and	inherit	them.

3.	Code	Maintenance

This	feature	is	more	of	a	necessity	for	any	programming	languages,	it
helps	users	 from	doing	re-work	 in	many	ways.	 It	 is	always	easy	and
time-saving	 to	 maintain	 and	 modify	 the	 existing	 codes	 with
incorporating	new	changes	into	it.

4.	Security

With	 the	 use	 of	 data	 hiding	 and	 abstraction	 mechanism,	 we	 are
filtering	 out	 limited	 data	 to	 exposure	 which	 means	 we	 are
maintaining	security	and	providing	necessary	data	to	view.

5.	Design	Benefits

If	you	are	practicing	on	OOPs	the	design	benefit	a	user	will	get	is	in
terms	of	designing	and	fixing	things	easily	and	eliminating	the	risks
(if	any).	Here	 the	Object	Oriented	Programs	 forces	 the	designers	 to
have	 a	 longer	 and	 extensive	 design	 phase,	 which	 results	 in	 better
designs	and	fewer	flaws.	After	a	time	when	the	program	has	reached
some	 critical	 limits,	 it	 is	 easier	 to	 program	 all	 the	 non-OOP’s	 one



separately.

6.	Better	productivity

With	 the	 above-mentioned	 facts	 of	 using	 the	 application	 definitely
enhances	its	users	overall	productivity.	This	leads	to	more	work	done,
finish	 a	 better	 program,	 having	more	 inbuilt	 features	 and	 easier	 to
read,	 write	 and	 maintain.	 An	 OOP	 programmer	 cans	 stitch	 new
software	objects	 to	make	completely	new	programs.	A	good	number
of	libraries	with	useful	functions	in	abundance	make	it	possible.

7.	Easy	troubleshooting

let’s	witness	some	common	issues	or	problems	any	developers	face	in
their	work.

Is	this	the	problem	in	the	widget	file?

Is	the	problem	is	in	the	Whale	lumper?

Will	I	have	to	trudge	through	that	‘sewage.c’	file?

Commenting	on	all	these	issues	related	to	code.

So,	many	 a	 time	 it	 happens	 that	 something	 has	 gone	 wrong	which
later	becomes	so	brainstorming	for	the	developers	to	look	where	the
error	 is.	Relax!	Working	with	OOP	language	you	will	know	where	to
look	for.	This	is	the	advantage	of	using	encapsulation	in	OOP;	all	the
objects	are	self-constrained.	With	this	modality	behavior,	the	IT	teams
get	a	lot	of	work	benefits	as	they	are	now	capable	to	work	on	multiple
projects	simultaneously	with	an	advantage	that	there	is	no	possibility
of	code	duplicity.

8.	Polymorphism	Flexibility

You	 behave	 in	 a	 different	 way	 if	 the	 place	 or	 surrounding	 gets
change.	A	person	will	behave	like	a	customer	if	he	is	in	a	market,	the
same	person	will	behave	 like	a	student	 if	he	 is	 in	a	school	and	as	a



son/daughter	if	put	in	a	house.	Here	we	can	see	that	the	same	person
showing	different	behavior	every	time	the	surroundings	are	changed.
This	 means	 polymorphism	 is	 flexibility	 and	 helps	 developers	 in	 a
number	of	ways.

Its	simplicity	Extensibility

9.	Problems	solving

Decomposing	 a	 complex	 problem	 into	 smaller	 chunks	 or	 discrete
components	is	a	good	practice.	OOP	is	specialized	in	this	behavior,	as
it	 breaks	 down	 your	 software	 code	 into	 bite-sized	 –	 one	 object	 at	 a
time.	In	doing	this	the	broken	components	can	be	reused	in	solutions
to	 different	 other	 problems	 (both	 less	 and	more	 complex)	 or	 either
they	can	be	replaced	by	the	future	modules	which	relate	to	the	same
interface	with	implementations	details.

A	general	relatable	real-time	scenario	–	at	a	high	 level	a	car	can	be
decomposed	 into	 wheels,	 engine,	 a	 chassis	 soon	 and	 each	 of	 those
components	 can	 be	 further	 broken	 down	 into	 even	 smaller	 atomic
components	like	screws	and	bolts.	The	engine’s	design	doesn’t	need
to	 know	 anything	 about	 the	 size	 of	 the	 tires	 in	 order	 to	 deliver	 a
certain	amount	of	power	(as	output)	has	little	to	do	with	each	other.

	

Question.	What	 is	 a	 Class?	 Also	write	 an	 example	 (syntax)	 to
define	 a	 class	 in	 C++.	 Differentiate	 between	 a	 class	 and	 an
object?
Answer:	Class:	 A	 class	 in	 C++	 is	 the	 building	 block	 that	 leads	 to
Object-Oriented	programming.	 It	 is	a	user-defined	data	type,	which
holds	 its	 own	 data	members	 and	member	 functions,	 which	 can	 be
accessed	and	used	by	creating	an	instance	of	that	class.	A	C++	class
is	like	a	blueprint	for	an	object.
For	Example:	Consider	 the	Class	of	Cars.	There	may	be	many	cars
with	 different	 names	 and	 brand	 but	 all	 of	 them	 will	 share	 some



common	 properties	 like	 all	 of	 them	will	 have	 4	 wheels,	 Speed
Limit,	Mileage	range	etc.	So	here,	Car	is	the	class	and	wheels,	speed
limits,	mileage	are	their	properties.

A	Class	is	a	user	defined	data-type	which	has	data	members	and
member	functions.
Data	members	are	 the	data	variables	and	member	 functions	are
the	 functions	 used	 to	 manipulate	 these	 variables	 and	 together
these	data	members	and	member	functions	defines	the	properties
and	behavior	of	the	objects	in	a	Class.
In	the	above	example	of	class	Car,	the	data	member	will	be	speed
limit,	 mileage	 etc.	 and	 member	 functions	 can	 be	 apply
brakes,	increase	speed	etc.

An	Object	 is	 an	 instance	 of	 a	 Class.	 When	 a	 class	 is	 defined,	 no
memory	 is	 allocated	 but	 when	 it	 is	 instantiated	 (i.e.	 an	 object	 is
created)	memory	is	allocated.

Defining	Class	and	Declaring	Objects

A	class	is	defined	in	C++	using	keyword	class	followed	by	the	name
of	 class.	The	body	of	 class	 is	defined	 inside	 the	curly	brackets	and
terminated	 by	 a	 semicolon	 at	 the	 end.

	



Comparison	Chart

BASIS	 FOR
COMPARISON

OBJECT CLASS

Definition An	 instance	 of	 a
class	 is	 known	 as
Object.

A	 template	 or	 blueprint	 with	which
objects	 are	 created	 is	 known	 as
Class.

Type	of	entity Physical Logical

Creation Object	is	invoked	by
new	keyword.

Class	 is	 declared	 by	 using	 class
keyword.

Memory
allocation

Creation	 of	 object
consumes	memory.

The	 formation	 of	 a	 class	 doesn't
allocate	memory.

	

Question.	What	is	Inheritance?	What	are	the	different	types	of
inheritance	in	C++?

Answer:	 The	 capability	 of	 a	 class	 to	 derive	 properties	 and
characteristics	from	another	class	is	called	Inheritance.	Inheritance	is
one	of	the	most	important	feature	of	Object	Oriented	Programming.

Sub	 Class:	 The	 class	 that	 inherits	 properties	 from	 another	 class	 is
called	Sub	class	or	Derived	Class.

Super	Class:	The	class	whose	properties	are	inherited	by	sub	class	is
called	Base	Class	or	Super	class.

Types	of	Inheritance	in	C++



1)	Single	inheritance

2)	Multilevel	inheritance

3)	Multiple	inheritance

4)	Hierarchical	inheritance

5)	Hybrid	inheritance

	

Single	inheritance

In	Single	inheritance	one	class	inherits	one	class	exactly.

For	example:	Lets	say	we	have	class	A	and	B

	

B	inherits	A

Example	of	Single	inheritance:

	

#include	<iostream>

using	namespace	std;

class	A	{

public:

		A(){

					cout<<"Constructor	of	A	class"<<endl;

		}

};



class	B:	public	A	{

public:

		B(){

					cout<<"Constructor	of	B	class";

		}

};

int	main()	{

			//Creating	object	of	class	B

			B	obj;

			return	0;

}

Output:

	

Constructor	of	A	class

Constructor	of	B	class

2)Multilevel	Inheritance

In	this	type	of	inheritance	one	class	inherits	another	child	class.

	

C	inherits	B	and	B	inherits	A

Example	of	Multilevel	inheritance:

	



#include	<iostream>

using	namespace	std;

class	A	{

public:

		A(){

					cout<<"Constructor	of	A	class"<<endl;

		}

};

class	B:	public	A	{

public:

		B(){

					cout<<"Constructor	of	B	class"<<endl;

		}

};

class	C:	public	B	{

public:

		C(){

					cout<<"Constructor	of	C	class"<<endl;

		}

};

int	main()	{



		//Creating	object	of	class	C

		C	obj;

		return	0;

}

Output:

	

Constructor	of	A	class

Constructor	of	B	class

Constructor	of	C	class

Multiple	Inheritance

In	multiple	inheritance,	a	class	can	inherit	more	than	one	class.	This
means	 that	 in	 this	 type	 of	 inheritance	 a	 single	 child	 class	 can	 have
multiple	parent	classes.

For	example:

	

C	inherits	A	and	B	both

Example	of	Multiple	Inheritance:

	

#include	<iostream>

using	namespace	std;

class	A	{

public:



		A(){

					cout<<"Constructor	of	A	class"<<endl;

		}

};

class	B	{

public:

		B(){

					cout<<"Constructor	of	B	class"<<endl;

		}

};

class	C:	public	A,	public	B	{

public:

		C(){

					cout<<"Constructor	of	C	class"<<endl;

		}

};

int	main()	{

			//Creating	object	of	class	C

			C	obj;

			return	0;

}



Constructor	of	A	class

Constructor	of	B	class

Constructor	of	C	class

4)Hierarchical	Inheritance

In	this	type	of	inheritance,	one	parent	class	has	more	than	one	child
class.	For	example:

	

Class	B	and	C	inherits	class	A

Example	of	Hierarchical	inheritance:

	

#include	<iostream>

using	namespace	std;

class	A	{

public:

		A(){

					cout<<"Constructor	of	A	class"<<endl;

		}

};

class	B:	public	A	{

public:

		B(){



					cout<<"Constructor	of	B	class"<<endl;

		}

};

class	C:	public	A{

public:

		C(){

					cout<<"Constructor	of	C	class"<<endl;

		}

};

int	main()	{

			//Creating	object	of	class	C

			C	obj;

			return	0;

}

Output:

	

Constructor	of	A	class

Constructor	of	C	class

5)	Hybrid	Inheritance

Hybrid	 inheritance	 is	 a	 combination	 of	 more	 than	 one	 type	 of
inheritance.	 For	 example,	 a	 child	 and	 parent	 class	 relationship	 that
follows	 multiple	 and	 hierarchical	 inheritance	 both	 can	 be	 called



hybrid	inheritance.

	

Question.		 What	do	you	mean	by	polymorphism?	What	are	the
Static	and	dynamic	polymorphism	techniques?
Answer:	 The	 word	 polymorphism	 means	 having	 many	 forms.	 In
simple	 words,	 we	 can	 define	 polymorphism	 as	 the	 ability	 of	 a
message	to	be	displayed	in	more	than	one	form.	A	real-life	example
of	 polymorphism,	 a	 person	 at	 the	 same	 time	 can	 have	 different
characteristics.	Like	a	man	at	the	same	time	is	a	father,	a	husband,
an	 employee.	 So	 the	 same	 person	 possess	 different	 behavior	 in
different	 situations.	 This	is	 called	 polymorphism.	 Polymorphism	 is
considered	 as	 one	 of	 the	 important	 features	 of	 Object	 Oriented
Programming.

In	C++	polymorphism	is	mainly	divided	into	two	types:
Compile	time	Polymorphism
Runtime	Polymorphism

Static	and	dynamic	polymorphism	techniques:

The	static	polymorphism	is	often	referred	to	as	compile-time	or	early
binding	 polymorphism	 whereas,	 the	 dynamic	 polymorphism	 is
referred	 to	 as	 run-time	 or	 late	 binding	 polymorphism.	 The	 static
polymorphism	 is	 achieved	 using	 method	 overloading	 and	 operator
overloading,	 whereas	 the	 dynamic	 polymorphism	 is	 achieved
using	method	overriding.	Also,	in	the	subsequent	section	of	this	post,
you	will	find	the	implementation	of	operator	overloading	and	the	list
of	operators	that	can	and	can't	be	overloaded.

Static	Polymorphism	(Method	Overloading)

This	type	of	polymorphism	is	also	referred	to	as	compile-time	or	early
binding	polymorphism	because	the	decision	about	which	method	will
be	called	is	made	at	the	compile	time.	Now	let's	see	one	example	of
method	overloading	where	we	will	give	two	methods	the	same	name



but	different	signatures	(number	and	type	of	parameters)	to	achieve
static	polymorphism.

	

Filename:	Program.cs

	

using	System;

namespace	Studytonight

{

				public	class	Interest

				{

								//	interest	for	1	year	of	tenure

								public	double	TrueBank(double	amount,	double	rate)

								{

												return	amount	+	(amount	*	rate);

								}

	 	 	 	 	 	 	 	 public	 double	 TrueBank(double	 amount,	 double	 rate,	 string
holdertype)

								{

												return	amount	+	(amount	*	rate)	+	2000;

								}

				}

				public	class	Program



				{

								public	static	void	Main(string[]	args)

								{

												Interest	i	=	new	Interest();

	

												double	finalamount	=	i.TrueBank(5000.00,	0.1);

	 	 	 	 	 	 	 	 	 	 	 	 Console.WriteLine("Normal	 interest	 for	 a	 holder	 "	 +
finalamount);

	

												finalamount	=	i.TrueBank(5000.00,	0.1,	"prime");

	 	 	 	 	 	 	 	 	 	 	 	 Console.WriteLine("Prime	 interest	 for	 a	 holder	 "	 +
finalamount);

	

								}

				}

}

Output:

	

Normal	interest	for	a	holder	5500

Prime	interest	for	a	holder	7500

In	the	code	example	above,	we	have	created	a	class	named	Interest,
and	in	that,	we	have	given	the	same	method	name	that	is	TrueBank	to



two	 different	 methods	 having	 different	 signature	 (number	 of
parameters)	and	method	definition.	We	have	then	created	the	object
of	 the	 Interest	 class	 and	 provided	 the	 parameter	 list.	 If	 you	 closely
observe	 the	above	parameter	 list,	 you	will	 come	 to	know	where	 the
difference	lies.	In	the	first	one,	we	have	given	two	parameters,	and	in
the	second	call,	three	parameters	are	provided.	At	compile-time,	the
respective	 method	 automatically	 gets	 called	 with	 the	 help	 of
signatures	 of	 the	 methods.	 And	 hence,	 we	 have	 achieved	 static
polymorphism.

	

2.	Dynamic	Polymorphism	(Method	Overriding)

This	type	of	polymorphism	also	referred	to	as	run-time	or	late	binding
polymorphism	because	 of	 the	decision	 about	which	method	 is	 to	 be
called	is	made	at	run	time.	In	dynamic	polymorphism,	we	override	the
base	class	method	in	derived	class	using	inheritance,	and	this	can	be
achieved	 using	 override	 and	 virtual	 keywords.	Now	we	will	 see	 the
example	of	method	overriding	where	we	will	 give	 the	 same	method
name	and	signature	 (same	number	of	parameters	and	type	but	with
different	definitions)	too	in	parent	and	child	class.

Filename:	Program.cs

using	System;

namespace	Studytonight

{

				public	class	Interest

				{

								public	virtual	double	TrueBank(double	amount,	double	rate)

								{



												return	amount	+	(amount	*	rate);

								}

				}

				//	first	child	class

				public	class	SimpleInterest:	Interest

				{

								public	override	double	TrueBank(double	amount,	double	rate)

								{

												return	amount	+	(amount	*	rate)	+	1000;

								}

				}

				//	second	child	class

				public	class	FixedInterest:	Interest

				{

								public	override	double	TrueBank(double	amount,	double	rate)

								{

												return	amount	+	(amount	*	rate)	+	1500;

								}

				}

				public	class	Program

				{



								public	static	void	Main(string[]	args)

								{

												Interest	i	=	new	Interest();

												double	finalamount	=	i.TrueBank(5000.00,0.1);

	 	 	 	 	 	 	 	 	 	 	 	 Console.WriteLine("Normal	 interest	 for	 a	 holder
"+finalamount);

	

												i	=	new	SimpleInterest();

												finalamount	=	i.TrueBank(5000.00,0.1);

	 	 	 	 	 	 	 	 	 	 	 	 Console.WriteLine("Simple	 interest	 for	 a	 holder
"+finalamount);

	

												i	=	new	FixedInterest();

												finalamount	=	i.TrueBank(5000.00,0.1);

	 	 	 	 	 	 	 	 	 	 	 	 Console.WriteLine("Fixed	 interest	 for	 a	 holder
"+finalamount);

	

								}

				}

}

Output:

	



Normal	interest	for	a	holder	5500

Simple	interest	for	a	holder	6500

Fixed	interest	for	a	holder	7000

In	the	above	example,	we	have	created	a	base	class	named	Interest,
and	 two	derived	classes	 that	 is	SimpleInterest	and	FixedInterest.	 In
the	base	class,	we	used	the	virtual	keyword	with	the	method	so	that	it
can	overriden	in	the	derived	class	using	the	override	keyword.	Here,
we	have	given	the	same	method	name	that	is	TrueBank	and	the	same
signature	 (number	 and	 type	 parameters)	 but	 different	 method
definitions	in	the	derived/child	classes.

The	 created	 the	 object	 of	 the	 Interest	 class	 and	 provided	 the
parameter	 list.	 If	 you	 closely	 observe	 the	 above	 parameter	 list,	 you
will	 find	 the	 same	parameters	 have	been	provided	 for	 each	method
call.	Here	 the	compiler	only	requires	TrueBank()	method	to	compile
successfully	 and	 at	 the	 run-time	 desired	 methods	 get	 called
respectively,	based	on	which	class's	object	is	calling	it.

Question.	 Define	 Exception	 handling.	 What	 are	 the	 uses	 of
keywords	 TRY	 Throw	 and	 CATCH?	 Explain	 with	 an	 example
writing	a	C++	program?

Answer:	An	exception	 is	a	problem	that	arises	during	the	execution
of	 a	 program.	 A	 C++	 exception	 is	 a	 response	 to	 an	 exceptional
circumstance	 that	 arises	 while	 a	 program	 is	 running,	 such	 as	 an
attempt	to	divide	by	zero.
Exceptions	 provide	 a	 way	 to	 transfer	 control	 from	 one	 part	 of	 a
program	 to	 another.	 C++	 exception	 handling	 is	 built	 upon	 three
keywords:	try,	catch,	and	throw.

Throw	−	A	program	 throws	an	 exception	when	a	problem	 shows
up.	This	is	done	using	a	throw	keyword.
Catch	 −	 A	 program	 catches	 an	 exception	 with	 an	 exception
handler	at	 the	place	 in	a	program	where	you	want	 to	handle	 the
problem.	 The	 catch	 keyword	 indicates	 the	 catching	 of	 an



exception.
Try	−	A	try	block	 identifies	 a	 block	 of	 code	 for	 which	 particular
exceptions	 will	 be	 activated.	 It's	 followed	 by	 one	 or	 more	 catch
blocks.

Assuming	 a	 block	 will	 raise	 an	 exception,	 a	 method	 catches	 an
exception	 using	 a	 combination	 of	 the	 try	 and	 catch	 keywords.	 A
try/catch	 block	 is	 placed	 around	 the	 code	 that	 might	 generate	 an
exception.	Code	within	 a	 try/catch	block	 is	 referred	 to	 as	 protected
code,	and	the	syntax	for	using	try/catch	as	follows	−

try	{

			//	protected	code

}	catch(	ExceptionName	e1	)	{

			//	catch	block

}	catch(	ExceptionName	e2	)	{

			//	catch	block

}	catch(	ExceptionName	eN	)	{

			//	catch	block

}

You	can	list	down	multiple	catch	statements	to	catch	different	type	of
exceptions	 in	case	your	 try	block	raises	more	 than	one	exception	 in
different	situations.
Throwing	Exceptions

Exceptions	 can	 be	 thrown	 anywhere	 within	 a	 code	 block
using	 throw	 statement.	 The	 operand	 of	 the	 throw	 statement
determines	a	 type	 for	 the	exception	and	can	be	any	expression	and
the	 type	 of	 the	 result	 of	 the	 expression	 determines	 the	 type	 of
exception	thrown.
Following	 is	 an	example	of	 throwing	an	exception	when	dividing	by



zero	condition	occurs	−

double	division(int	a,	int	b)	{

			if(	b	==	0	)	{

						throw	"Division	by	zero	condition!";

			}

			return	(a/b);

}

Catching	Exceptions

The	 catch	 block	 following	 the	 try	 block	 catches	 any	 exception.	 You
can	 specify	 what	 type	 of	 exception	 you	 want	 to	 catch	 and	 this	 is
determined	by	the	exception	declaration	that	appears	in	parentheses
following	the	keyword	catch.

try	{

			//	protected	code

}	catch(	ExceptionName	e	)	{

		//	code	to	handle	ExceptionName	exception

}

Above	 code	will	 catch	 an	 exception	 of	Exception	Name	 type.	 If	 you
want	to	specify	that	a	catch	block	should	handle	any	type	of	exception
that	is	thrown	in	a	try	block,	you	must	put	an	ellipsis,	...,	between	the
parentheses	enclosing	the	exception	declaration	as	follows	−

try	{

			//	protected	code



}	catch(...)	{

		//	code	to	handle	any	exception

}

The	 following	 is	 an	 example,	 which	 throws	 a	 division	 by	 zero
exception	and	we	catch	it	in	catch	block.

	 #include	<iostream>

using	namespace	std;

	

double	division(int	a,	int	b)	{

			if(	b	==	0	)	{

						throw	"Division	by	zero	condition!";

			}

			return	(a/b);

}

	

int	main	()	{

			int	x	=	50;

			int	y	=	0;

			double	z	=	0;

	

			try	{



						z	=	division(x,	y);

						cout	<<	z	<<	endl;

			}	catch	(const	char*	msg)	{

					cerr	<<	msg	<<	endl;

			}

	

			return	0;

}

Because	 we	 are	 raising	 an	 exception	 of	 type	 const	 char*,	 so	 while
catching	this	exception,	we	have	to	use	const	char*	in	catch	block.	If
we	 compile	 and	 run	 above	 code,	 this	 would	 produce	 the	 following
result	−	Division	by	zero	condition!

	

Question.	What	 is	 Access	modifier	 in	 C++?	 Define	 each	 type
and	also	differentiate	between	these.

Answer:	 The	 access	 modifiers	 of	 C++	 are	 public,	 private,	 and
protected.
One	of	 the	main	 features	of	object-oriented	programming	 languages
such	as	C++	is	data	hiding.
Data	hiding	 refers	 to	 restricting	access	 to	data	members	of	a	 class.
This	 is	 to	 prevent	 other	 functions	 and	 classes	 from	 tampering	with
the	class	data.
However,	 it	 is	 also	 important	 to	make	 some	member	 functions	 and
member	data	accessible	so	that	the	hidden	data	can	be	manipulated
indirectly.
The	 access	 modifiers	 of	 C++	 allows	 us	 to	 determine	 which	 class



members	are	accessible	to	other	classes	and	functions,	and	which	are
not.
For	example,

class	Patient	{

	

				private:

								int	patientNumber;

								string	diagnosis;

	

				public:

	

						void	billing()	{

										//	code

						}

	

						void	makeAppointment()	{

										//	code

						}

};

	
Here,	the	variables	patientNumber	and	diagnosis	of	the	Patient	class
are	 hidden	 using	 the	 private	 keyword,	 while	 the	member	 functions



are	made	accessible	using	the	public	keyword.

Types	of	C++	Access	Modifiers

In	C++,	there	are	3	access	modifiers:
public
private
protected

public	Access	Modifier

The	 public	keyword	 is	 used	 to	 create	 public	members	 (data	 and
functions).
The	public	members	are	accessible	from	any	part	of	the	program.

Example	1:	C++	public	Access	Modifier

#include	<iostream>

using	namespace	std;

	

//	define	a	class

class	Sample	{

	

				//	public	elements

			public:

				int	age;

	

				void	displayAge()	{

								cout	<<	"Age	=	"	<<	age	<<	endl;



				}

};

	

int	main()	{

	

				//	declare	a	class	object

				Sample	obj1;

	

				cout	<<	"Enter	your	age:	";

	

				//	store	input	in	age	of	the	obj1	object

				cin	>>	obj1.age;

	

				//	call	class	function

				obj1.displayAge();

	

				return	0;

}

Output:

Enter	your	age:	20



Age	=	20

In	 this	 program,	 we	 have	 created	 a	 class	 named	 Sample,	 which
contains	a	public	variable	age	and	a	public	function	displayAge().
In	main(),	we	have	created	an	object	of	the	Sample	class	named	obj1.
We	 then	 access	 the	 public	 elements	 directly	 by	 using	 the
codes	obj.age	and	obj.displayAge().

private	Access	Modifier

The	private	keyword	is	used	to	create	private	members	(data	and
functions).
The	private	members	can	be	accessed	only	from	within	the	class.
However,	 friend	 classes	 and	 friend	 functions	 can	 access	 private
members.

Example	2:	C++	private	Access	Specifier

#include	<iostream>

using	namespace	std;

	

//	define	a	class

class	Sample	{

	

				//	private	elements

			private:

				int	age;

	

				//	public	elements



			public:

				void	displayAge(int	a)	{

								age	=	a;

								cout	<<	"Age	=	"	<<	age	<<	endl;

				}

};

	

int	main()	{

	

				int	ageInput;

	

				//	declare	an	object

				Sample	obj1;

	

				cout	<<	"Enter	your	age:	";

				cin	>>	ageInput;

	

				//	call	function	and	pass	ageInput	as	argument

				obj1.displayAge(ageInput);

	

				return	0;



}

Output:

Enter	your	age:	20

Age	=	20

In	 main(),	 the	 object	 obj1	 cannot	 directly	 access	 the	 class
variable	age.

//	error

cin	>>	obj1.age;

We	 can	 only	 indirectly	 manipulate	 age	 through	 the	 public
function	 displayAge(),	 since	 this	 function	 assigns	 age	 to	 the
argument	passed	into	it	i.e.	the	function	parameter	int	a.

protected	Access	Modifier

Before	we	learn	about	the	protected	access	specifier,	make	sure	you
know	about	inheritance	in	C++.

The	protected	keyword	is	used	to	create	protected	members	(data
and	function).
The	protected	members	can	be	accessed	within	the	class	and	from
the	derived	class.

Example	3:	C++	protected	Access	Specifier

#include	<iostream>

using	namespace	std;

	

https://www.programiz.com/cpp-programming/inheritance


//	declare	parent	class

class	Sample	{

				//	protected	elements

			protected:

				int	age;

};

	

//	declare	child	class

class	SampleChild	:	public	Sample	{

	

			public:

				void	displayAge(int	a)	{

								age	=	a;

								cout	<<	"Age	=	"	<<	age	<<	endl;

				}

	

};

	

int	main()	{

				int	ageInput;

	



				//	declare	object	of	child	class

				SampleChild	child;

	

				cout	<<	"Enter	your	age:	";

				cin	>>	ageInput;

	

				//	call	child	class	function

				//	pass	ageInput	as	argument

				child.displayAge(ageInput);

	

				return	0;

}

Output:

Enter	your	age:	20

Age	=	20

Here,	ChildSample	is	an	inherited	class	that	is	derived	from	Sample.
The	variable	age	is	declared	in	Sample	with	the	protected	keyword.
This	 means	 that	 ChildSample	 can	 access	 age	 since	 Sample	 is	 its
parent	class.
We	 see	 this	 as	 we	 have	 assigned	 the	 value
of	 age	 in	 ChildSample	 even	 though	 age	 is	 declared	 in
the	Sample	class.



public	elements	can	be	accessed	by	all	other	classes	and	functions.
private	 elements	 cannot	 be	 accessed	 outside	 the	 class	 in	 which
they	are	declared,	except	by	friend	classes	and	functions.
protected	elements	 are	 just	 like	 the	 private,	 except	 they	 can	 be
accessed	by	derived	classes.

Specifiers Same	Class Derived	Class

public Yes Yes

private Yes No

protected Yes Yes

Question.	 Write	 short	 notes	 on	 the	 examples	 on	 each	 of	 the
following	with	respect	to	C++?
a)	 Data	 Abstraction:	 Data	 abstraction	 refers	 to	 providing	 only
essential	 information	 to	 the	 outside	 world	 and	 hiding	 their
background	 details,	 i.e.,	 to	 represent	 the	 needed	 information	 in
program	without	presenting	the	details.
Data	abstraction	is	a	programming	(and	design)	technique	that	relies
on	the	separation	of	interface	and	implementation.
Let's	 take	one	real	 life	example	of	a	TV,	which	you	can	 turn	on	and
off,	 change	 the	 channel,	 adjust	 the	 volume,	 and	 add	 external
components	 such	as	 speakers,	VCRs,	 and	DVD	players,	BUT	you	do
not	know	its	internal	details,	that	is,	you	do	not	know	how	it	receives
signals	over	 the	air	or	 through	a	cable,	how	 it	 translates	 them,	and
finally	displays	them	on	the	screen.
Thus,	 we	 can	 say	 a	 television	 clearly	 separates	 its	 internal
implementation	from	its	external	 interface	and	you	can	play	with	its
interfaces	 like	 the	 power	 button,	 channel	 changer,	 and	 volume
control	without	having	any	knowledge	of	its	internals.



In	C++,	classes	provides	great	level	of	data	abstraction.	They	provide
sufficient	 public	 methods	 to	 the	 outside	 world	 to	 play	 with	 the
functionality	 of	 the	 object	 and	 to	manipulate	 object	 data,	 i.e.,	 state
without	actually	knowing	how	class	has	been	implemented	internally.
For	 example,	 your	 program	 can	 make	 a	 call	 to	 the	 sort()	 function
without	knowing	what	algorithm	the	function	actually	uses	to	sort	the
given	 values.	 In	 fact,	 the	 underlying	 implementation	 of	 the	 sorting
functionality	 could	 change	 between	 releases	 of	 the	 library,	 and	 as
long	as	the	interface	stays	the	same,	your	function	call	will	still	work.
Data	Abstraction	Example

Any	 C++	 program	 where	 you	 implement	 a	 class	 with	 public	 and
private	 members	 is	 an	 example	 of	 data	 abstraction.	 Consider	 the
following	example	−

#include	<iostream>

using	namespace	std;

	

class	Adder	{

			public:

						//	constructor

						Adder(int	i	=	0)	{

									total	=	i;

						}

	

						//	interface	to	outside	world

						void	addNum(int	number)	{



									total	+=	number;

						}

	

						//	interface	to	outside	world

						int	getTotal()	{

									return	total;

						};

	

			private:

						//	hidden	data	from	outside	world

						int	total;

};

	

int	main()	{

			Adder	a;

	

			a.addNum(10);

			a.addNum(20);

			a.addNum(30);

	

			cout	<<	"Total	"	<<	a.getTotal()	<<endl;



			return	0;

}

When	 the	 above	 code	 is	 compiled	 and	 executed,	 it	 produces	 the
following	result	−

Total	60

Above	class	adds	numbers	together,	and	returns	the	sum.	The	public
members	 -	 addNum	 and	 getTotal	 are	 the	 interfaces	 to	 the	 outside
world	and	a	user	needs	 to	know	 them	 to	use	 the	 class.	The	private
member	total	is	something	that	the	user	doesn't	need	to	know	about,
but	is	needed	for	the	class	to	operate	properly.
b)	Overriding:	C++	Function	Overriding

If	derived	class	defines	same	function	as	defined	in	its	base	class,	it	is
known	as	 function	overriding	 in	C++.	 It	 is	used	 to	achieve	 runtime
polymorphism.	 It	 enables	 you	 to	 provide	 specific	 implementation	 of
the	function	which	is	already	provided	by	its	base	class.
C++	Function	Overriding	Example

Let's	 see	 a	 simple	 example	 of	 Function	 overriding	 in	 C++.	 In	 this
example,	we	are	overriding	the	eat()	function.
1.	 #include	<iostream>		
2.	 using	namespace	std;		
3.	 class	Animal	{		
4.	 				public:		
5.	 void	eat(){				
6.	 cout<<"Eating...";				
7.	 				}						
8.	 };			
9.	 class	Dog:	public	Animal				
10.	 {				
11.	 	public:		
12.	 	void	eat()				



13.	 				{				
14.	 							cout<<"Eating	bread...";				
15.	 				}				
16.	 };		
17.	 int	main(void)	{		
18.	 			Dog	d	=	Dog();				
19.	 			d.eat();		
20.	 			return	0;		
21.	 }		
Output:

Eating	bread...

C)	Encapsulation:	All	C++	programs	are	composed	of	the	following
two	fundamental	elements	−

Program	 statements	 (code)	−	 This	 is	 the	 part	 of	 a	 program	 that
performs	actions	and	they	are	called	functions.
Program	data	−	The	data	is	the	information	of	the	program	which
gets	affected	by	the	program	functions.

Encapsulation	is	an	Object	Oriented	Programming	concept	that	binds
together	 the	 data	 and	 functions	 that	manipulate	 the	 data,	 and	 that
keeps	 both	 safe	 from	 outside	 interference	 and	 misuse.	 Data
encapsulation	led	to	the	important	OOP	concept	of	data	hiding.
Data	 encapsulation	 is	 a	 mechanism	 of	 bundling	 the	 data,	 and	 the
functions	 that	 use	 them	 and	 data	 abstraction	 is	 a	 mechanism	 of
exposing	 only	 the	 interfaces	 and	 hiding	 the	 implementation	 details
from	the	user.
C++	 supports	 the	 properties	 of	 encapsulation	 and	 data	 hiding
through	the	creation	of	user-defined	types,	called	classes.	We	already
have	 studied	 that	 a	 class	 can	 contain	 private,
protected	and	public	members.	By	default,	all	items	defined	in	a	class
are	private.	For	example	−

class	Box	{

			public:



						double	getVolume(void)	{

									return	length	*	breadth	*	height;

						}

	

			private:

						double	length;						//	Length	of	a	box

						double	breadth;					//	Breadth	of	a	box

						double	height;						//	Height	of	a	box

};

The	 variables	 length,	 breadth,	 and	 height	 are	 private.	 This	 means
that	 they	 can	 be	 accessed	 only	 by	 other	members	 of	 the	Box	 class,
and	 not	 by	 any	 other	 part	 of	 your	 program.	 This	 is	 one	 way
encapsulation	is	achieved.
To	make	parts	of	a	class	public	(i.e.,	accessible	to	other	parts	of	your
program),	 you	 must	 declare	 them	 after	 the	 public	 keyword.	 All
variables	or	functions	defined	after	the	public	specifier	are	accessible
by	all	other	functions	in	your	program.
Making	 one	 class	 a	 friend	 of	 another	 exposes	 the	 implementation
details	and	reduces	encapsulation.	The	ideal	is	to	keep	as	many	of	the
details	of	each	class	hidden	from	all	other	classes	as	possible.
Data	Encapsulation	Example

Any	 C++	 program	 where	 you	 implement	 a	 class	 with	 public	 and
private	 members	 is	 an	 example	 of	 data	 encapsulation	 and	 data
abstraction.	Consider	the	following	example	−

#include	<iostream>

using	namespace	std;



	

class	Adder	{

			public:

						//	constructor

						Adder(int	i	=	0)	{

									total	=	i;

						}

	

						//	interface	to	outside	world

						void	addNum(int	number)	{

									total	+=	number;

						}

	

						//	interface	to	outside	world

						int	getTotal()	{

									return	total;

						};

	

			private:

						//	hidden	data	from	outside	world

						int	total;



};

	

int	main()	{

			Adder	a;

	

			a.addNum(10);

			a.addNum(20);

			a.addNum(30);

	

			cout	<<	"Total	"	<<	a.getTotal()	<<endl;

			return	0;

}

When	 the	 above	 code	 is	 compiled	 and	 executed,	 it	 produces	 the
following	result	−

Total	60

Above	class	adds	numbers	together,	and	returns	the	sum.	The	public
members	 addNum	 and	 getTotal	 are	 the	 interfaces	 to	 the	 outside
world	and	a	user	needs	 to	know	 them	 to	use	 the	 class.	The	private
member	total	is	something	that	is	hidden	from	the	outside	world,	but
is	needed	for	the	class	to	operate	properly.
Designing	Strategy

Most	 of	 us	 have	 learnt	 to	 make	 class	 members	 private	 by	 default
unless	we	really	need	to	expose	them.	That's	just	good	encapsulation.
This	 is	 applied	 most	 frequently	 to	 data	 members,	 but	 it	 applies



equally	to	all	members,	including	virtual	functions.
d)	Virtual	Functioning:	A	virtual	 function	 is	a	member	 function	 in
the	base	class	that	we	expect	to	redefine	in	derived	classes.
Basically,	 a	 virtual	 function	 is	 used	 in	 the	 base	 class	 in	 order	 to
ensure	 that	 the	 function	 is	 overridden.	 This	 especially	 applies	 to
cases	where	a	pointer	of	base	class	points	 to	an	object	of	a	derived
class.
For	example,	consider	the	code	below:

class	Base	{

			public:

				void	print()	{

								//	code

				}

};

	

class	Derived	:	public	Base	{

			public:

				void	print()	{

								//	code

				}

};

Later,	 if	 we	 create	 a	 pointer	 of	 Base	 type	 to	 point	 to	 an	 object
of	 Derived	 class	 and	 call	 the	 print()	 function,	 it	 calls



the	print()	function	of	the	Base	class.
In	other	words,	the	member	function	of	Base	is	not	overridden.

int	main()	{

				Derived	derived1;

				Base*	base1	=	&derived1;

	

				//	calls	function	of	Base	class

				base1->print();

	

				return	0;

}

In	 order	 to	 avoid	 this,	 we	 declare	 the	 print()	 function	 of
the	Base	class	as	virtual	by	using	the	virtual	keyword.

class	Base	{

			public:

				virtual	void	print()	{

								//	code

				}

};

Virtual	 functions	 are	 an	 integral	 part	 of	 polymorphism	 in	 C++.	 To



learn	more,	check	our	tutorial	on	C++	Polymorphism.

Example	1:	C++	virtual	Function

#include	<iostream>

using	namespace	std;

	

class	Base	{

			public:

				virtual	void	print()	{

								cout	<<	"Base	Function"	<<	endl;

				}

};

	

class	Derived	:	public	Base	{

			public:

				void	print()	{

								cout	<<	"Derived	Function"	<<	endl;

				}

};

	

int	main()	{

https://www.programiz.com/cpp-programming/polymorphism


				Derived	derived1;

	

				//	pointer	of	Base	type	that	points	to	derived1

				Base*	base1	=	&derived1;

	

				//	calls	member	function	of	Derived	class

				base1->print();

	

				return	0;

}

Output

Derived	Function

Here,	we	have	declared	the	print()	function	of	Base	as	virtual.
So,	 this	 function	 is	 overridden	 even	 when	 we	 use	 a	 pointer
of	Base	type	that	points	to	the	Derived	object	derived1.
e)	 Constructor	 and	 destructor:	 Constructors	 and	 Destructors	 in
C++

Constructor

A	Constructor	 is	 a	member	 function	 of	 a	 class.	 It	 is	mainly	 used	 to
initialize	the	objects	of	the	class.	It	has	the	same	name	as	the	class.
When	an	object	is	created,	the	constructor	is	automatically	called.	It
is	a	special	kind	of	member	function	of	a	class.
Difference	Between	Constructor	and	Other	Member	Functions:



1.	The	Constructor	has	the	same	name	as	the	class	name.
2.	The	Constructor	is	called	when	an	object	of	the	class	is	created.
3.	A	Constructor	does	not	have	a	return	type.
4.	 When	 a	 constructor	 is	 not	 specified,	 the	 compiler	 generates	 a
default	constructor	which	does	nothing.
5.	There	are	3	types	of	constructors:

	Default	Constructor
Parameterized	Constructor
Copy	constructor

A	constructor	can	also	be	defined	in	the	private	section	of	a	class.
Moving	on	with	this	article	on	Constructor	and	Destructor	in	C++
Default	Constructor

A	Default	constructor	is	a	type	of	constructor	which	doesn’t	take	any
argument	and	has	no	parameters.
Here	is	an	Example	Code

1

2

3

4

5

6

7

8

9

10

11

#include	<iostream>

using	namespace	std;

class	test	{

public:

int	y,	z;

test()

{

y	=	7;

z	=	13;

}

};



12

13

14

15

16

17

int	main()

{

test	a;

cout	<<"the	sum	is:	"<<	a.y+a.z;

return	1;

}

Output:

Explanation:
The	above	program	is	a	basic	demo	of	a	constructor	in	c++.	We	have
a	class	test,	with	two	data	members	of	type	int	called	y	and	z.	Then
we	 have	 a	 default	 constructor,	 which	 assigns	 7	 and	 13	 to	 the
variables	y	and	z	respectively.
The	 main	 function	 has	 an	 object	 of	 class	 test	 called	 a.	 When	 this
object	 is	created	 the	constructor	 is	called	and	 the	variables	y	and	z
are	given	values.	The	main	 function	has	a	cout	statement	or	a	print
statement.	In	this	statement,	the	sum	is	printed.	With	respect	to	the
object	of	the	class,	we	access	the	public	members	of	the	class,	that	is,
a.y	gives	the	value	of	y	and	the	same	for	z.	We	display	the	sum	of	y
and	z.
The	 default	 constructor	works	 this	way.	When	we	 do	 not	 provide	 a
default	 constructor,	 the	 compiler	 generates	 a	 default	 constructor
which	does	not	operate.
Next,	let	us	take	a	look	at	parameterized	constructor.

	



Visit	www.goseeko.com	to	access	free	study	material	as	per	your	university	syllabus


