Aryabhatta Knowledge University (AKU)

Mechanical Engineering

Mathematics-III

Solved Exam Paper 2019

Instructions
i. The marks are indicated in the right-hand margin.
ii. There are NINE questions
iii. Attempt FIVE questions
iv. Questions no. 1 is compulsory
v. Relevant statistical data are given at the end of question paper.

1. Q1. Choose the correct answer (any seven):
a. If p_{n} is the legendre polynomial of first kind, then the value of $\int_{1}^{1} p_{n}(x) d x$ is.
i. 0
ii. $\quad \frac{2}{2 n+1}$
iii. 2
iv. 1
b. If j_{n} is the bessel's function of first kind, then the value of $2 j_{n}$, is
i. $\quad j_{n-1}+j_{n+1}$
ii. $\quad j_{n}-j_{n+1}$
iii. $\quad j_{n}+j_{n+1}$
iv. $\quad j_{n-1}-j_{n+1}$
c. The particular integral of $\left(D^{2}-D^{\circ}\right) Z=x-y$, is
i. $\quad \frac{1}{2} x^{3}+y x^{2}$
ii. $\quad \frac{1}{3} x^{3}-\frac{1}{2} \mathrm{yx}^{2}$
iii. $\quad \frac{1}{6} x^{3}-\frac{1}{2} \mathrm{yx}^{2}$
iv. $\quad x^{3}+\frac{1}{2} \mathrm{yx}^{2}$
d. The function $x^{3}+x+1$ in terms of legendre polynominal is equal to
i. $\quad p_{3}+5 p_{1}-5 p_{0}$
ii. $\quad{ }_{5}^{2} p_{3}+{ }_{5}^{8} p_{1}+p_{o}$
iii. $\quad{ }_{3}^{2} p_{3}+p_{2}+p_{1}-p_{0}$
iv. $\quad{ }_{5}^{1} p_{3}+p_{2}+5 p_{1}-\frac{1}{5} p_{0}$
e. Let the joint probability density functions of the continuous random variable X and Y be.
$f(x, y)=\left(\begin{array}{cc}k\left(x^{2}+y^{2}\right) & 0<x<\overline{1,0}<y<1 \\ 0 & \text { elsewhere }\end{array}\right)$

Then the margin density of X is.
i. $\quad 3 x^{2}+1$
ii. $\quad \frac{3}{5}\left(2 x^{2}+1\right)$
iii. $\quad \frac{1}{2}\left(3 x^{2}+1\right)$
iv. $\quad\left(x^{2}+\frac{2}{3}\right)$
f. If $P(A \cap B)=\frac{1}{4}, P(A \cup B)=\frac{3}{4}, P(\bar{A})=\frac{2}{3}$ then $P\left(A^{\prime} / \bar{B}\right)$ isequalto
i. $\quad \frac{1}{3}$
ii. $\quad \frac{1}{4}$
iii. $\quad \frac{1}{2}$
iv. $\quad \frac{3}{8}$
g. Let A,B and C be any three mutually exclusive events. Which
one of the following is incorrect?
i. $\quad P(A \cap B \cap C)=P(A)+P(B)+P(C)$
ii. $P(A \cap B)=0$
iii. $P(A \cup B \cup C)=P(A)+P(B)+P(C)$
iv. $P(B \cap C)=0$
h. If μ is the mean and σ is the standard deviation of a set of measurement which are normally distributed, then percentage of measurement within the range $\mu+2 \sigma$
i. 98
ii. 95.44
iii. 99.73
iv. 95
i. If the density function of gamma distribution is

$$
f(x)=\text { 团 } \begin{array}{cc}
\frac{\left(x^{a-1} e^{\frac{-x}{\beta}}\right)}{\beta^{a} \Gamma \alpha} & x>0 \\
0 & x \leq 0
\end{array}
$$

Then variation is equal to.
i. $\mathrm{A} \beta$
ii. β
iii. $\alpha^{2} \beta$
iv. $\alpha \beta^{2}$
j. The moment generating function of a continuous random variable X be given as
$M_{X}(t)=(1-t)^{7}$ for $|t|<1$
Then its mean and variance is
i. $\quad\left(7, \frac{1}{7}\right)$
ii. $\quad\left(\frac{1}{7} \frac{1}{7}\right)$
iii. $\quad\left(\frac{1}{7}, 7\right)$

Q2. A) Solve

$x\left(y^{2}+z\right) \frac{\partial z}{\partial x}-y\left(x^{2}+z\right) \frac{\partial z}{\partial y}=\left(x^{2}-y^{2}\right) z$
Answer: $\frac{d x}{x\left(y^{2}+z\right)}=\frac{d y}{-y\left(x^{2}+z\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)}$
Choose the multipliers as $\frac{1}{x^{\prime}, y^{\prime}} \frac{1}{z}$
$\frac{1}{x} \mathrm{dx}+\frac{1}{y} \mathrm{dy}+\frac{1}{z} \mathrm{dz}=k\left\{\frac{1}{k} x\left(y^{2}+z\right)+\frac{1}{y}\left(k^{2}+z\right)+\frac{1}{z}\left(x^{2}+z\right)\right.$
$\frac{1}{x} \mathrm{dx}+\frac{1}{y} \mathrm{dy}+\frac{1}{z} \mathrm{dz}=k\left(y^{2}+z-k^{2}-z+x^{2}-y^{2}\right)$
$\frac{1}{x} \mathrm{dx}+\frac{1}{y} \mathrm{dy}+\frac{1}{z} \mathrm{dz}=0$
On integration
$\log x+\log y+\log z=\log c_{1}$
$\log (x y z)=\log c_{1}$
$\mathrm{xyz}=c_{1}$
now again choose the multipliers as $\mathrm{x}, \mathrm{y},-1$
$\mathrm{xdx}-\mathrm{ydy}-\mathrm{dz}=k\left[x^{2}\left(y^{2}+z\right)-y^{2}\left(x^{2}+z\right)-z\left(x^{2}-y^{2}\right)\right]$
$\mathrm{xdx}-\mathrm{ydy}-\mathrm{dz}=k\left[x^{2} y^{2}+x^{2} z-y^{2} x^{2}-y^{2} z-\mathrm{zx}^{2}+\mathrm{zy}^{2}\right]$
$x d x-y d y-d z=0$
on integration
$\frac{x^{2}}{2}-\frac{y^{2}}{2}-z=c_{2}$
$x^{2}-y^{2}-2 z=2 c_{2}$
Now on combining both eq. we get a general solution
$f\left(\mathrm{xyz}, x^{2}-y^{2}-2 z\right)=0$

2. Q3. State and prove Rodrigues formula .

Sol- we derive a formula for the legendre polynomials
Formula
Now proof
Let
We shall first establish that the nth derivation of \mathbf{u}, that is u_{n} is a so the legendre differentiate eq.
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) u=0-----1$
Differ w.r. to x
$\frac{\mathrm{du}}{\mathrm{dx}}=u_{1}=n\left(x^{2}-1\right)^{n-1} .2 x$
Or
$\left(x^{2}-1\right) u_{1}=2 \mathrm{nx}\left(x^{2}-1\right)^{u}$
i.e $\left(x^{2}-1\right) u_{1}=2 \mathrm{nxu}$

Diff. w.r. to x again, we have

$$
\left(x^{2}-1\right) u_{2}+2 x u_{1}=2 x\left(x u_{1}+u\right)
$$

Now differ. The result in timer by applying lebuitz theorem for derivation of a product given by

$$
(\mathrm{uv})_{n}=\mathrm{uv}_{n}+\mathrm{nu}_{1} v_{n-1}+\frac{n(n-1)}{2} u_{2} v_{n-2}+\ldots . u_{n} v
$$

$\left[\left(x^{2}-1\right) u_{2}\right]_{n}+2\left(x u_{1}\right)_{n}=2 n\left(\mathrm{xv}_{1}\right)_{n}+2_{x} u_{n}$
$\left[\left(x^{2}-1\right) u_{n+2}+\mathrm{x} 2 * u_{x+1}+\frac{n(n-1)}{2} \cdot 2 u_{x}\right]+2\left(x u_{x+1}+x \mathrm{cu}\right)$
$\left(x^{2}-1\right) u_{n+2}+2 n * u_{n+1}+\left(n^{2}-n\right) u_{n}+2 * u_{n+1}+2_{n} u_{x}=2 \mathrm{nx} u_{n+1}+2 n^{2} u_{x}+2$
$\left(x^{2}-1\right) u_{n+2}+2 x u_{n+1}-n^{2} u_{n}-n u_{x}=0$
Or
$\left(1-x^{2}\right) u_{n+2}-2 * u_{n+1}+n(n+1)$ un $=0$
This can be put in the form
$\left(1-x^{2}\right) u_{x}{ }^{\prime \prime}-2 \mathrm{xu}_{n}{ }^{\prime}+n(n+1)$ un $=0---2$
Comparing 2 with 1 we conclude that u_{n} is a solution of the legendr eq. it may be observed that U is a polynomial of degrees 2 x \& henc ϵ will be a polynomial of degree x .
also $p_{x}(x)$ which satisfies the legendre differentiate eq. is alsc polynomial of degree x.

$$
\begin{aligned}
& p_{n}(x)=k u_{n}=k\left[\left(x^{2}-1\right)^{n}\right]_{n} \\
& p_{n}(x)=k\left[(k-1)^{n}(x+1)^{n}\right]
\end{aligned}
$$

Applying Leibnitz theorem for the RHS we have
$p_{n}(x)$

$$
\begin{aligned}
& =k\left[(k-1)^{n}(x+1)^{n}\right]_{n}+n \cdot n(x-1)^{n-1}\left[(x+1)^{n}\right]_{n-1}+\frac{n(n-1)}{2} n(n- \\
& (x-1)^{n-2}\left[(x-1)^{n}\right]_{n-2}+----\left[(x-1)^{n}\right]_{n}
\end{aligned}
$$

It should be observed that if $z=(x-1)^{n}$
$z_{1}=n(x-1)^{n-1} \& z_{2}=n(n-1)(x-1)^{n-2}$ etc.
$z_{n}=n(n-1)(n-2) \ldots .2 .1(x-1)^{n-1}$ or
$z_{n}=n!(x-1)^{\circ}$
$z_{n}=n!$
$\left[(x-1)^{n}\right]_{x} x$!
Putting $x=1$ in eq. 1 all the terms in RHS become zero except the] term which becomes $n!(1+1)^{n}=n!2^{n}$
$p_{n}(1)=1$ by thedef of $p_{n}(x)$
$1=\mathrm{kn}: 2^{n}$
$k=\frac{1}{n!2^{n}}$
$p_{n}(x)=k u_{n}$
$p_{n}(x)=\frac{1}{2^{n} n!}\left[\left(x^{2}-1\right)^{n}\right]$
$p_{n}(x)=\frac{1 d^{n}}{2^{n} n!d^{x}}\left(x^{2}-1\right)^{n}$

Q4. A coin is tossed. If it turns up H, two balls will be drawn from urn A otherwise 2 balls will be drawn from urn B. urn A contains 3 red and 5 blue balls, urn B contains 7 red and 5 blue balls. What is the probability that urn A is used, given that both balls and blue? (find in both cases, when balls were chosen with replacement and without replacement).

Sol- let us define the following events
$A_{1}=\operatorname{urn} \mathrm{A}$ is chosen
$A_{2}=u r n B$ is chosen
$\mathrm{E}=$ two blue balls are drawn (with reputation)
Then we have
$p\left(A_{1}\right), \frac{1}{2}$
$p(E / A)=\frac{5}{8} * \frac{5}{8}$
25
$\overline{64}$
$p\left(A_{2}\right), \frac{1}{2}$
$p(E / A)=\frac{5}{12} * \frac{5}{12}$
25
144
So,

$$
p(A / E)=\frac{\left(P\left(A_{1}\right) \& P\left(E / A_{1}\right)\right)}{P\left(A_{1}\right) P\left(E / A_{1}\right)+P\left(A_{2}\right) P\left(E / A_{2}\right)}
$$

$\left(\frac{1}{2} * \frac{25}{64}\right)$
$\frac{1}{2} * \frac{25}{64}+\frac{1}{2} * \frac{25}{144}$
25
$\overline{\frac{128}{25}+\frac{25}{288}}$
$\frac{25}{\frac{128}{\frac{(225+100)}{1152}}}=\frac{25}{\frac{128}{325}}$
$\frac{9}{13}$
(b) for event $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \ldots . . A_{n}$
$P\left(\mathrm{U}^{n} i=1 A_{i}\right) \geq \sum_{i=1}^{n} p\left(A_{i}\right)-(n-1)$
Prove that
i. $\quad p\left(\cap^{n} i=1\right) \geq 1-\sum_{i=1}^{n} p\left(\bar{A}_{i}\right)$
$p\left(\bigcap^{n} i=1 A_{i}\right) \geq 1-\sum_{i=1}^{n} p\left(\bar{A}_{i}\right)$

Q5. State and prove bayes theorem.

Sol. -it states that "If $A_{1}, A_{2}---A_{N}$ are n mutually exclusive event with $P\left(A_{1}\right) \neq 0, i=1,2---n \quad \& B$ is any other event which can occurred with A or A_{1} or A_{N} then we have,
$P\left(A_{i} / B\right)=\begin{gathered}{\left[P\left(A_{i}\right) P\left(B / A_{i}\right)\right]} \\ \sum_{i=1}^{n} p(A ;) P(B / A ;)\end{gathered}$
Proof- by compound theorem of probability,
We get
$P(A ; \cap B)=P\left(A_{i}\right) \cdot P(B / A ;)$
Or $P(A ; \cap B)=P(B) \cdot P(A ; / B)$
Given that, B is any other event which occur with A or A ; or A_{N} i.e
$B=B \cap\left(A_{1}\right.$ or A_{i} or $\left.----A_{n}\right)$
$B \cap\left[A_{1} \cup A_{2} \cup---A_{N}\right]$
$\left(B \cap A_{1}\right) \cup\left(B \cap A_{2}\right) \bigcup---U\left(B \cap A_{N}\right)$
$P\left[B \cap A_{1} \cup\left(B \cap A_{2}\right) \bigcup----P\left(B \cap A_{n}\right)\right]$
$p\left(B \cap A_{1}\right)+P\left(B \cap A_{2}\right) \pm--P\left(B \cap A_{n}\right)$
$\sum_{i=1}^{n} p(B \cap A ;)$
$\sum_{i=1}^{n} p(A ;) P(B / A ;)$

Again from II
$P(A ; / B)=\frac{[P(A ;) P(B / A ;)]}{\sum_{i-1}^{n} p(A ;) P(B / A ;)}$
(b) a random variable X follows binominal distribution with parameter $\mathrm{n}=40$ and $p=\frac{1}{4}$ use chebyshev's inequality to find bounds for.
a. $p(|X-10|<8)$
b. $p(|X-10|<10)$

