
Aryabhatta	Knowledge	University	(AKU)

Information	Technology	(IT)

Data	Structure	and	Algorithm

Solved	Exam	Paper	2019

	

Question	1.	What	is	a	hash	table,	and	what	is	the	average	case
and	worst	case	time	for	each	of	its	operations?	How	can	we	use
this	structure	to	find	all	anagrams	in	a	dictionary?

Answer:	 	 The	 difficulty	 with	 direct	 addressing	 is	 obvious:	 if	 the
universe	U	is	large,	storing	a	table	T	of	size	|U|	may	be	impractical,
or	 even	 impossible,	 given	 the	 memory	 available	 on	 a	 typical
computer.	Furthermore,	 the	set	K	of	keys	actually	stored	may	be	so
small	 relative	 to	U	 that	most	 of	 the	 space	 allocated	 for	 T	would	 be
wasted.

When	 the	 set	K	of	 keys	 stored	 in	 a	dictionary	 is	much	 smaller	 than
the	universe	U	of	all	possible	keys,	a	hash	 table	requires	much	 less
storage	 than	 a	 direct-address	 table.	 Specifically,	 the	 storage
requirements	can	be	reduced	to	 (|K|),	even	though	searching	for	an
element	in	the	hash	table	still	requires	only	O(1)	time.	(The	only	catch
is	 that	 this	 bound	 is	 for	 the	 average	 time,	 whereas	 for	 direct
addressing	it	holds	for	the	worst-case	time.)

	

Figure:	Using	a	hash	function	h	to	map	keys	to	hash-table	slots.	Keys
k2	and	k5	map	to	the	same	slot,	so	they	collide.

With	direct	addressing,	an	element	with	key	k	is	stored	in	slot	k.	With
hashing,	this	element	is	stored	in	slot	h(k);	that	is,	a	hash	function	h
is	used	to	compute	the	slot	from	the	key	k.	Here	h	maps	the	universe
U	of	keys	into	the	slots	of	a	hash	table	T[0	.	.	m	-	1]:

h:	U	 {0,1,	.	.	.	,	m	-	1}	.

We	say	 that	an	element	with	key	k	hashes	 to	slot	h(k);	we	also	say
that	h(k)	is	the	hash	value	of	key	k.	Figure		illustrates	the	basic	idea.
The	point	of	the	hash	function	is	to	reduce	the	range	of	array	indices
that	need	to	be	handled.	Instead	of	|U|	values,	we	need	to	handle	only
m	values.	Storage	requirements	are	correspondingly	reduced.

The	 fly	 in	 the	 ointment	 of	 this	 beautiful	 idea	 is	 that	 two	 keys	may
hash	 to	 the	 same	 slot--a	 collision.	 Fortunately,	 there	 are	 effective
techniques	for	resolving	the	conflict	created	by	collisions.

Of	course,	 the	 ideal	solution	would	be	 to	avoid	collisions	altogether.
We	might	try	to	achieve	this	goal	by	choosing	a	suitable	hash	function
h.	 One	 idea	 is	 to	 make	 h	 appear	 to	 be	 "random,"	 thus	 avoiding
collisions	 or	 at	 least	 minimizing	 their	 number.	 The	 very	 term	 "to

hash,"	evoking	images	of	random	mixing	and	chopping,	captures	the
spirit	 of	 this	 approach.	 (Of	 course,	 a	 hash	 function	 h	 must	 be
deterministic	in	that	a	given	input	k	should	always	produce	the	same
output	 h(k).)	 Since	 |U|	 >	m,	 however,	 there	must	 be	 two	 keys	 that
have	the	same	hash	value;	avoiding	collisions	altogether	is	therefore
impossible.	 Thus,	 while	 a	 well-designed,	 "random"-	 looking	 hash
function	 can	 minimize	 the	 number	 of	 collisions,	 we	 still	 need	 a
method	for	resolving	the	collisions	that	do	occur.

The	 remainder	 of	 this	 section	 presents	 the	 simplest	 collision
resolution	 technique,	 called	 chaining.	 Section	 introduces	 an
alternative	method	for	resolving	collisions,	called	open	addressing.

	

Figure:	 Collision	 resolution	 by	 chaining.	 Each	 hash-table	 slot	 T[j]
contains	 a	 linked	 list	 of	 all	 the	 keys	 whose	 hash	 value	 is	 j.	 For
example,	h(k1)	=	h(k4)	and	h(k5)	=	h(k2)	=	h(k7).

Since,	we	will	be	performing	multiple	anagram	queries,	our	first	step
is	 to	 load	 all	 of	 the	 (25,000)	 words	 in	 the	 dictionary	 into	 an
appropriate	data	 structure.	A	primary	 requirement	 is	 that	one	must
be	able	to	efficiently	search	this	data	structure	to	look	for	anagrams
of	a	given	word.	A	clever	trick	that	we	will	use	to	facilitate	this	is	to
first	sort	 the	 letters	of	every	word	we	 insert	 into	our	data	structure

(you	may	use	any	sort	you	wish	to	produce	a	key	for	each	word.	For
example,	the	key	for	the	string	"toxic"	is	"ciotx",	similarly	the	key	for
both	"star"	and	"rats"	is	"arst".	We	will	then	use	a	hash	table	to	store
pairs	of	strings,	where	the	pair	consists	of	 the	original	word	and	 its
key.	When	performing	insertions	into	the	hash	table,	we	will	compute
the	 hash	 of	 the	 key	 of	 the	 word	 to	 compute	 the	 correct	 bucket
(location	in	the	hash	table).	This	approach	guarantees	that	all	words
which	are	anagrams	of	one	another	are	stored	in	the	same	bucket	of
the	 hash	 table.	 Similarly,	 when	we	 are	 searching	 for	 anagrams,	we
will	first	compute	the	key	of	the	word	we	are	searching	for,	then	hash
the	 key,	 then	 search	 that	 bucket	 for	 anagram	matches.	 You	 should
feel	free	to	use	any	appropriate	hash	function	for	hashing	strings	(but
please	cite	any	source	which	you	use).	Also,	make	sure	your	function
is	efficient	and	does	not	hash	completely	unrelated	sets	of	anagrams
to	the	same	bucket	if	possible.	If	it	does,	handle	the	collisions	as	you
see	fit	(e.g.	linked	processing).	Also	note	that	if	you	must	probe	for	a
given	set	of	anagrams	in	time	greater	than	or	equal	to	O(logn),	then
you	must	revise	your	hash	function.	You	will	be	graded	heavily	on	the
performance	of	the	efficiency	of	your	function.

The	 hash	 table	 code	 which	 you	 provide	 only	 needs	 to	 have	 the
minimum	 functionality	 needed	 to	 solve	 this	 problem.	 You	may	 fix	 a
size	 for	 your	 hash	 table	 for	 efficient	 searching.	 It	 is	 recommended
that	the	final	hash	table	you	submit	contain	at	least	25,000	buckets.
(For	debugging	your	code,	it	is	suggested	that	you	work	with	a	much
smaller	 practice	 dictionary,	 perhaps	 10	 words,	 and	 a	much	 smaller
hash	table,	perhaps	8-10	buckets	(depending	on	whether	or	not	there
are	 any	 anagrams	 in	 the	 dictionary).	 Make	 sure	 your	 table	 size	 is
prime	to	help	reduce	collisions.	Remember	it	is	ok	to	sacrifice	space
for	 speed	 --	 that	 is	what	 hashing	 is	 all	 about.	 That	 said,	 your	 table
should	not	be	bigger	than	200,000.	1You	may	disregard	any	words	in
the	 dictionary	 which	 contain	 any	 punctuation	 characters.	 Also,	 you
should	convert	any	uppercase	characters	to	lowercase	(thus	you	are
only	representing	words	that	contain	all	lower	case	characters).	Your
program	should	read	anagram	queries	from	an	input	file	(“input.txt”).

Each	query	in	the	file	will	be	on	its	own	line	and	will	simply	consist	of
a	 string.	 The	 output	 file	 (“output.txt”)	 should	 contain	 the	 original
string,	 then	 the	 number	 of	 matching	 anagrams,	 followed	 by	 those
anagrams.	 An	 example	 input	 file	 and	 the	 resulting	 output	 file	 have
been	 provided.	 Your	 output	 file	 should	 match	 this	 format	 exactly,
except	 that	 the	 matching	 anagrams	 you	 output	 may	 be	 ordered
differently.

Question	2.	Describe	insertion	in	max	heap	tree	with	example
from	the	following	list	of	number:	35	33	42	10	14	19	27	44	26
31

Answer:	 Heap	 is	 a	 special	 case	 of	 balanced	 binary	 tree	 data
structure	where	the	root-node	key	is	compared	with	its	children	and
arranged	accordingly.	If	α	has	child	node	β	then	−

key(α)	≥	key(β)

As	 the	 value	 of	 parent	 is	 greater	 than	 that	 of	 child,	 this	 property
generates	Max	 Heap.	 Based	 on	 this	 criteria,	 a	 heap	 can	 be	 of	 two
types	−

For	Input	→	35	33	42	10	14	19	27	44	26	31

	

Min-Heap	−	Where	the	value	of	the	root	node	is	less	than	or	equal	to
either	of	its	children.

	

Max-Heap	 −	 Where	 the	 value	 of	 the	 root	 node	 is	 greater	 than	 or
equal	to	either	of	its	children.

	

Both	trees	are	constructed	using	the	same	input	and	order	of	arrival.

Max	Heap	Construction	Algorithm

We	shall	 use	 the	 same	example	 to	demonstrate	how	a	Max	Heap	 is
created.	The	procedure	 to	create	Min	Heap	 is	similar	but	we	go	 for

min	values	instead	of	max	values.

We	are	going	 to	derive	 an	algorithm	 for	max	heap	by	 inserting	one
element	 at	 a	 time.	 At	 any	 point	 of	 time,	 heap	 must	 maintain	 its
property.	 While	 insertion,	 we	 also	 assume	 that	 we	 are	 inserting	 a
node	in	an	already	heapified	tree.

Step	1	−	Create	a	new	node	at	the	end	of	heap.

Step	2	−	Assign	new	value	to	the	node.

Step	3	−	Compare	the	value	of	this	child	node	with	its	parent.

Step	4	−	If	value	of	parent	is	less	than	child,	then	swap	them.

Step	5	−	Repeat	step	3	&	4	until	Heap	property	holds.

	

Note	−	In	Min	Heap	construction	algorithm,	we	expect	 the	value	of
the	parent	node	to	be	less	than	that	of	the	child	node.

	

Question.	Sort	the	given	values	using	quicksort	and	write	time
complexity	of	algorithm:	65,	70,	and	75,80,85,60,55,50,45

Answer:	Sorting	 takes	place	 from	the	pivot	value,	which	 is	 the	 first
value	of	the	given	elements,	this	is	marked	bold.	The	values	at	the	left
pointer	and	right	pointer	are	indicated	using	L	and	R	respectively.

65	70L	75	80	85	60	55	50	45R

Since	 pivot	 is	 not	 yet	 changed	 the	 same	 process	 is	 continued	 after
interchanging	the	values	at	L	and	R	positions

65	45	75	L	80	85	60	55	50	R	70

65	45	50	80	L	85	60	55	R	75	70

65	45	50	55	85	L	60	R	80	75	70

65	45	50	55	60	R	85	L	80	75	70

When	 the	 L	 and	 R	 pointers	 cross	 each	 other	 the	 pivot	 value	 is
interchanged	with	the	value	at	right	pointer.	If	the	pivot	is	changed	it
means	 that	 the	pivot	has	occupied	 its	original	position	 in	 the	sorted
order	 (shown	 in	 bold	 italics)	 and	 hence	 two	 different	 arrays	 are
formed,	one	from	start	of	the	original	array	to	the	pivot	position-1	and
the	other	from	pivot	position+1	to	end.

60	L	45	50	55	R	65	85	L	80	75	70	R

55	L	45	50	R	60	65	70	R	80	L	75	85

50	L	45	R	55	60	65	70	80	L	75	R	85

In	the	next	pass	we	get	the	sorted	form	of	the	array.

45	50	55	60	65	70	75	80	85

Question.	 Insert	 the	 following	 sequence	 of	 elements	 into	 an
AVL	 tree,	 starting	 with	 the	 empty	 tree:	 10,
20,15,25,30,16,18,19

Answer:

	

	

Question.	Write	algorithm	for	quicksort	and	mention	time	and
space	complexity	in	each	case

Answer:	Let's	consider	an	array	with	values	{9,	7,	5,	11,	12,	2,	14,	3,

10,	6}

Below,	we	have	a	pictorial	representation	of	how	quick	sort	will	sort
the	given	array.

	

	

In	step	1,	we	select	 the	 last	element	as	 the	pivot,	which	 is	6	 in	 this
case,	and	call	for	partitioning,	hence	re-arranging	the	array	in	such	a
way	that	6	will	be	placed	in	its	final	position	and	to	its	left	will	be	all
the	elements	less	than	it	and	to	its	right,	we	will	have	all	the	elements
greater	than	it.

Then	we	pick	the	subarray	on	the	left	and	the	subarray	on	the	right
and	select	a	pivot	for	them,	in	the	above	diagram,	we	chose	3	as	pivot
for	the	left	subarray	and	11	as	pivot	for	the	right	subarray.

And	we	again	call	for	partitioning.

For	an	array,	in	which	partitioning	leads	to	unbalanced	subarrays,	to
an	extent	where	on	 the	 left	 side	 there	are	no	elements,	with	all	 the
elements	greater	than	the	pivot,	hence	on	the	right	side.

And	if	keep	on	getting	unbalanced	subarrays,	then	the	running	time
is	the	worst	case,	which	is	O(n2)

Whereas	 if	 partitioning	 leads	 to	 almost	 equal	 subarrays,	 then	 the
running	time	is	the	best,	with	time	complexity	as	O(n*log	n).

Worst	Case	Time	Complexity	[Big-O]:	O(n2)

Best	Case	Time	Complexity	[Big-omega]:	O(n*log	n)

Average	Time	Complexity	[Big-theta]:	O(n*log	n)

Space	Complexity:	O(n*log	n)

As	 we	 know	 now,	 that	 if	 subarrays	 partitioning	 produced	 after
partitioning	are	unbalanced,	quick	sort	will	take	more	time	to	finish.
If	 someone	knows	 that	you	pick	 the	 last	 index	as	pivot	all	 the	 time,
they	 can	 intentionally	 provide	 you	 with	 array	 which	 will	 result	 in
worst-case	running	time	for	quick	sort.

To	avoid	this,	you	can	pick	random	pivot	element	too.	It	won't	make
any	 difference	 in	 the	 algorithm,	 as	 all	 you	 need	 to	 do	 is,	 pick	 a
random	 element	 from	 the	 array,	 swap	 it	 with	 element	 at	 the	 last
index,	make	it	the	pivot	and	carry	on	with	quick	sort.

Space	required	by	quick	sort	 is	very	 less,	only	O(n*log	n)	additional
space	is	required.

Quick	 sort	 is	not	a	 stable	 sorting	 technique,	 so	 it	might	 change	 the
occurence	of	two	similar	elements	in	the	list	while	sorting.

	

Question.	 Define	 collision	 in	 hashing.	What	 are	 the	 different
methodologies	to	resolve	collision?	Explain	briefly

Answer:	Hash	 functions	 are	 there	 to	map	 different	 keys	 to	 unique
locations	 (index	 in	 the	 hash	 table),	 and	 any	 hash	 function	 which	 is
able	to	do	so	is	known	as	the	perfect	hash	function.	Since	the	size	of
the	 hash	 table	 is	 very	 less	 comparatively	 to	 the	 range	 of	 keys,	 the
perfect	 hash	 function	 is	 practically	 impossible.	 What	 happens	 is,
more	than	one	keys	map	to	the	same	location	and	this	is	known	as	a
collision.	A	good	hash	function	should	have	less	number	of	collisions.

Collision	resolution	 is	 finding	another	 location	to	avoid	the	collision.
The	most	popular	resolution	techniques	are,
i.	 Separate	chaining
ii.	 Open	addressing

Open	addressing	can	be	further	divided	into,
i.	 Linear	Probing
ii.	 Quadratic	Probing
iii.	 Double	hashing

Open	Addressing:	In	this	technique	a	hash	table	with	per-identified
size	 is	 considered.	 All	 items	 are	 stored	 in	 the	 hash	 table	 itself.	 In
addition	 to	 the	 data,	 each	 hash	 bucket	 also	 maintains	 the	 three

states:	EMPTY,	OCCUPIED,	DELETED.	While	 inserting,	 if	 a	 collision
occurs,	alternative	cells	are	tried	until	an	empty	bucket	is	found.	For
which	one	of	the	following	technique	is	adopted.

●	 	 	 	 	 	 	1.Liner	Probing(this	is	prone	to	clustering	of	data	+	Some	other
constrains)

●							2.Quadratic	probing

●	 	 	 	 	 	 	3.Double	hashing(in	 short	 in	case	of	 collision	another	hashing
function	is	used	with	the	key	value	as	an	input	to	identify	where	in
the	open	addressing	scheme	the	data	should	actually	be	stored.)

Chaining:	 Open	 Hashing,	 is	 a	 technique	 in	 which	 the	 data	 is	 not
directly	stored	at	the	hash	key	index	(k)	of	the	Hash	table.	Rather	the
data	at	the	key	index	(k)	in	the	hash	table	is	a	pointer	to	the	head	of
the	 data	 structure	 where	 the	 data	 is	 actually	 stored.	 In	 the	 most
simple	and	common	 implementations	 the	data	structure	adopted	 for
storing	the	element	is	a	linked-list.

Linear	probing

In	this,	when	the	collision	occurs,	we	perform	a	linear	probe	for	the
next	slot,	and	this	probing	is	performed	until	an	empty	slot	is	found.
In	linear	probing,	the	worst	time	to	search	for	an	element	is	O	(table
size).	 The	 linear	 probing	 gives	 the	 best	 performance	 of	 the	 cache
but	its	problem	is	clustering.	The	main	advantage	of	this	technique
is	that	it	can	be	easily	calculated.

Quadratic	probing

In	 this,	 when	 the	 collision	 occurs,	 we	 probe	 for	 i2th	 slot	 in	 ith
iteration,	and	this	probing	is	performed	until	an	empty	slot	is	found.
The	cache	performance	in	quadratic	probing	is	lower	than	the	linear
probing.	Quadratic	probing	also	reduces	the	problem	of	clustering.

Double	hashing

In	this,	you	use	another	hash	function,	and	probe	for	(i	*	hash	2(x))
in	the	ith	iteration.	It	takes	longer	to	determine	two	hash	functions.
The	double	probing	gives	the	very	poor	the	cache	performance,	but
there	has	no	clustering	problem	in	it.

	

Question.	 Write	 an	 algorithm	 to	 count	 leaf	 node	 in	 a	 binary
tree	and	check	whether	the	tree	is	balanced	or	not.

Answer:	The	 algorithm	 to	 count	 the	 total	 number	 of	 leaf	 nodes	 is
very	similar	to	the	earlier	problem	about	printing	a	leaf	node.

Here	are	the	actual	steps	to	follow:

1)	 If	 the	 node	 is	 null	 return	 0,	 this	 is	 also	 the	 base	 case	 of	 our
recursive	algorithm

2)	If	a	leaf	node	is	encountered	then	return	1

3)	Repeat	the	process	with	left	and	right	subtree

4)	Return	the	sum	of	leaf	nodes	from	both	left	and	right	subtree

	

The	exact	steps	of	the	iterative	algorithm	to	get	a	total	number	of	leaf
nodes	of	a	binary	tree:

1)	If	the	root	is	null	then	return	zero.

2)	Start	the	count	with	zero

3)	Push	the	root	into	Stack

4)	loop	until	Stack	is	not	empty

5)	Pop	the	last	node	and	push	left	and	right	children	of	the	last	node
if	they	are	not	null.

6)	Increase	the	count

A	 tree	where	 no	 leaf	 is	much	 farther	 away	 from	 the	 root	 than	 any
other	 leaf.	Different	balancing	schemes	allow	different	definitions	of
“much	farther”	and	different	amounts	of	work	to	keep	them	balanced.

Consider	 a	 height-balancing	 scheme	 where	 following	 conditions
should	be	checked	to	determine	if	a	binary	tree	is	balanced.

An	 empty	 tree	 is	 height-balanced.	 A	 non-empty	 binary	 tree	 T	 is
balanced	if:

1)	Left	subtree	of	T	is	balanced

2)	Right	subtree	of	T	is	balanced

3)	The	difference	between	heights	of	left	subtree	and	right	subtree	is
not	more	than	1.

The	 above	 height-balancing	 scheme	 is	 used	 in	 AVL	 trees.	 The
diagram	below	shows	two	trees,	one	of	them	is	height-balanced	and
other	is	not.	The	second	tree	is	not	height-balanced	because	height	of
left	subtree	is	2	more	than	height	of	right	subtree.

	

Question.	Write	 a	 recursive	 and	 iterative	 version	 of	 insertion
sort	algorithm	and	mention	time	complexity

Answer:	 Recursive	 Insertion	 Sort	 has	 no
performance/implementation	advantages,	but	can	be	a	good	question
to	check	one’s	understanding	of	Insertion	Sort	and	recursion.

If	 we	 take	 a	 closer	 look	 at	 Insertion	 Sort	 algorithm,	 we	 keep
processed	elements	sorted	and	insert	new	elements	one	by	one	in	the
inserted	array.

Algorithm
1.	 Base	Case:	If	array	size	is	1	or	smaller,	return.
2.	 Recursively	sort	first	n-1	elements.
3.	 Insert	last	element	at	its	correct	position	in	sorted	array.

Insertion	sort	is	a	simple	sorting	algorithm	that	works	similar	to	the
way	you	sort	playing	cards	in	your	hands.	The	array	is	virtually	split
into	a	sorted	and	an	unsorted	part.	Values	from	the	unsorted	part	are
picked	and	placed	at	the	correct	position	in	the	sorted	part.

Algorithm

To	sort	an	array	of	size	n	in	ascending	order:

1:	Iterate	from	arr	[1]	to	arr	[n]	over	the	array.

2:	Compare	the	current	element	(key)	to	its	predecessor.

3:	If	the	key	element	is	smaller	than	its	predecessor,	compare	it	to	the
elements	before.	Move	the	greater	elements	one	position	up	to	make
space	for	the	swapped	element.

Below	 are	 the	 detailed	 example	 to	 illustrate	 the	 difference
between	the	two:
1.	 Time	Complexity:	 Finding	 the	 Time	 complexity	 of	 Recursion	 is

more	difficult	than	that	of	Iteration.

○							Recursion:	Time	complexity	of	recursion	can	be	found	by	finding
the	value	of	 the	nth	 recursive	call	 in	 terms	of	 the	previous	calls.
Thus,	 finding	 the	destination	case	 in	 terms	of	 the	base	case,	and
solving	 in	 terms	 of	 the	 base	 case	 gives	 us	 an	 idea	 of	 the	 time
complexity	of	recursive	equations.	Please	see	Solving	Recurrences
for	more	details.

○	 	 	 	 	 	 	Iteration:	Time	complexity	of	iteration	can	be	found	by	finding
the	number	of	cycles	being	repeated	inside	the	loop.

2.					Usage:	Usage	of	either	of	these	techniques	is	a	trade-off	between
time	complexity	and	size	of	code.	If	time	complexity	is	the	point	of
focus,	and	number	of	recursive	calls	would	be	large,	it	is	better	to
use	 iteration.	 However,	 if	 time	 complexity	 is	 not	 an	 issue	 and
shortness	of	code	is,	recursion	would	be	the	way	to	go.

○	 	 	 	 	 	 	Recursion:	Recursion	involves	calling	the	same	function	again,
and	hence,	has	a	very	small	length	of	code.	However,	as	we	saw	in
the	 analysis,	 the	 time	 complexity	 of	 recursion	 can	 get	 to	 be
exponential	 when	 there	 are	 a	 considerable	 number	 of	 recursive
calls.	Hence,	usage	of	recursion	 is	advantageous	 in	shorter	code,
but	higher	time	complexity.

○							Iteration:	Iteration	is	repetition	of	a	block	of	code.	This	involves
a	 larger	 size	 of	 code,	 but	 the	 time	 complexity	 is	 generally	 lesser
than	it	is	for	recursion.

3.	 	 	 	 	 Overhead:	 Recursion	 has	 a	 large	 amount	 of	 Overhead	 as
compared	to	Iteration.

○	 	 	 	 	 	 	Recursion:	 Recursion	 has	 the	 overhead	 of	 repeated	 function
calls,	that	is	due	to	repetitive	calling	of	the	same	function,	the	time
complexity	of	the	code	increases	manifold.

○							Iteration:	Iteration	does	not	involve	any	such	overhead.

4.	 	 	 	 	Infinite	Repetition:	Infinite	Repetition	in	recursion	can	lead	to
CPU	crash	but	in	iteration,	it	will	stop	when	memory	is	exhausted.

○	 	 	 	 	 	 	Recursion:	In	Recursion,	Infinite	recursive	calls	may	occur	due
to	some	mistake	in	specifying	the	base	condition,	which	on	never
becoming	 false,	 keeps	 calling	 the	 function,	 which	 may	 lead	 to
system	CPU	crash.

○							Iteration:	Infinite	iteration	due	to	mistake	in	iterator	assignment
or	 increment,	or	 in	the	terminating	condition,	will	 lead	to	 infinite
loops,	which	may	or	may	not	lead	to	system	errors,	but	will	surely
stop	program	execution	any	further.

Question.	Write	short	notes	on:

a)					BFS

b)				DFS

c)					Binary	search	tree

d)				Balance	factor

S.NO BFS DFS

1.
BFS	stands	for	Breadth	First
Search.

DFS	stands	for	Depth	First
Search.

2.
BFS(Breadth	First	Search)	uses
Queue	data	structure	for	finding
the	shortest	path.

DFS(Depth	First	Search)
uses	Stack	data	structure.

3.

BFS	can	be	used	to	find	single
source	shortest	path	in	an
unweighted	graph,	because	in
BFS,	we	reach	a	vertex	with
minimum	number	of	edges	from
a	source	vertex.

In	DFS,	we	might	traverse
through	more	edges	to	reach
a	destination	vertex	from	a
source.

4.
BFS	is	more	suitable	for
searching	vertices	which	are
closer	to	the	given	source.

DFS	is	more	suitable	when
there	are	solutions	away
from	source.

5.

BFS	considers	all	neighbors	first
and	therefore	not	suitable	for
decision	making	trees	used	in
games	or	puzzles.

DFS	is	more	suitable	for
game	or	puzzle	problems.
We	make	a	decision,	then
explore	all	paths	through
this	decision.	And	if	this
decision	leads	to	win
situation,	we	stop.

6.

The	 Time	 complexity	 of	 BFS	 is
O(V	+	E)	when	Adjacency	List	is
used	 and	 O(V^2)	 when

The	Time	complexity	of	DFS
is	 also	 O(V	 +	 E)	 when
Adjacency	 List	 is	 used	 and
O(V^2)	 when	 Adjacency

Adjacency	Matrix	 is	used,	where
V	 stands	 for	 vertices	 and	 E
stands	for	edges.

Matrix	 is	 used,	 where	 V
stands	 for	 vertices	 and	 E
stands	for	edges.

	

Binary	Search	Tree

A	Binary	Search	Tree	(BST)	is	a	tree	in	which	all	the	nodes	follow	the
below	mentioned	properties	−

●	 	 	 	 	 	The	value	of	the	key	of	the	left	sub-tree	is	less	than	the	value	of
its	parent	(root)	node's	key.

●						The	value	of	the	key	of	the	right	sub-tree	is	greater	than	or	equal
to	the	value	of	its	parent	(root)	node's	key.

Thus,	BST	divides	all	its	sub-trees	into	two	segments;	the	left	sub-tree
and	the	right	sub-tree	and	can	be	defined	as	−

left_subtree	(keys)	<	node	(key)	≤	right_subtree	(keys)

Binary	 Search	 Tree	 is	 a	 node-based	 binary	 tree	 data	 structure
which	has	the	following	properties:

●	 	 	 	 	 	The	left	subtree	of	a	node	contains	only	nodes	with	keys	lesser
than	the	node’s	key.

●						The	right	subtree	of	a	node	contains	only	nodes	with	keys	greater
than	the	node’s	key.

●						The	left	and	right	subtree	each	must	also	be	a	binary	search	tree

BST	is	a	collection	of	nodes	arranged	in	a	way	where	they	maintain
BST	properties.	Each	node	has	a	key	and	an	associated	value.	While
searching,	 the	 desired	 key	 is	 compared	 to	 the	 keys	 in	 BST	 and	 if

found,	the	associated	value	is	retrieved.

Following	is	a	pictorial	representation	of	BST	−

	

Observe	 that	 the	 root	node	key	 (27)	has	 all	 less-valued	keys	 on	 the
left	sub-tree	and	the	higher	valued	keys	on	the	right	sub-tree.

Basic	Operations

Following	are	the	basic	operations	of	a	tree	−

●						Search	−	Searches	an	element	in	a	tree.

●						Insert	−	Inserts	an	element	in	a	tree.

●						Pre-order	Traversal	−	Traverses	a	tree	in	a	pre-order	manner.

●						In-order	Traversal	−	Traverses	a	tree	in	an	in-order	manner.

●						Post-order	Traversal	−	Traverses	a	tree	in	a	post-order	manner.

Balance	Factor

AVL	 trees	are	height	balancing	binary	search	 tree.	AVL	 tree	checks
the	 height	 of	 the	 left	 and	 the	 right	 sub-trees	 and	 assures	 that	 the
difference	 is	 not	more	 than	 1.	 This	 difference	 is	 called	 the	Balance
Factor.

Here	we	see	that	the	first	tree	is	balanced	and	the	next	two	trees	are
not	balanced	−

	

Unbalanced	AVL	Trees

In	 the	 second	 tree,	 the	 left	 subtree	of	C	has	height	2	and	 the	 right
subtree	has	height	0,	so	the	difference	is	2.	In	the	third	tree,	the	right
subtree	of	A	has	height	2	and	the	 left	 is	missing,	so	 it	 is	0,	and	the
difference	is	2	again.	AVL	tree	permits	difference	(balance	factor)	to
be	only	1.

BalanceFactor	=	height	(left-sutree)	−	height(right-sutree)

If	the	difference	in	the	height	of	left	and	right	sub-trees	is	more	than
1,	the	tree	is	balanced	using	some	rotation	techniques.

To	balance	itself,	an	AVL	tree	may	perform	the	following	four	kinds	of
rotations	−

●						Left	rotation

●						Right	rotation

●						Left-Right	rotation

●						Right-Left	rotation

The	first	two	rotations	are	single	rotations	and	the	next	two	rotations
are	double	rotations.	To	have	an	unbalanced	tree,	we	at	least	need	a
tree	of	height	2.	With	this	simple	tree,	let's	understand	them	one	by
one.

	

Visit	www.goseeko.com	to	access	free	study	material	as	per	your	university	syllabus

