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Question:	 What	 is	 dot	 product?	 Explain	 its
significance	and	applications.

Answer:	The	dot	product	of	aa	with	unit	 vector	 uu,	 denoted	 a⋅u,	 is
defined	 to	 be	 the	 projection	 of	 aa	 in	 the	 direction	 of	 uu,	 or	 the
amount	 that	aa	 is	 pointing	 in	 the	 same	 direction	 as	 unit	 vector	 uu.
Let's	 assume	 for	 a	 moment	 that	 aa	 and	 uu	 are	 pointing	 in	 similar
directions.	Then,	you	can	imagine	a⋅uca⋅u	as	the	length	of	the	shadow
of	aa	onto	uu	if	their	tails	were	together	and	the	sun	was	shining	from
a	 direction	 perpendicular	 to	 uu.	 By	 forming	 a	 right	 triangle
with	aa	and	this	shadow,	you	can	use	geometry	to	calculate	that

a⋅u=∥a∥cosθ



	

Significance:	 	 It	 tells	 you	about	how	much	of	 the	vectors	are	 in	 the
same	direction
1.	 Application:	Finding	 angle	 between	 2	 vectors	 or	 2	 straight	 lines,

angle	 between	 2	 intersecting	 planes,	 angle	 between	 plane	 and
straight	line.

2.	 Finding	 projection	 of	 a	 vector	 onto	 another	 unit	 vector.
Applications	 include	finding	projection	of	a	 force	onto	a	specified
axis.

3.	 Checking	whether	2	vectors	are	perpendicular.
4.	 Finding	work	done	by	a	force.
5.	 Multiplication	 of	 matrices	 in	 linear	 algebra	 involve	 taking	 dot

product	of	the	row	in	left	matrix	with	column	in	right	matrix

	

Question:	Discuss	 the	 following	 terms	 as	 applied	 to
vectors	fields:

I)																	Gradient

II)													Divergence



III)									Curl	and	its	physical	interpretation

Answer:	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Gradient:	For	a	real-valued	 function	 f(x,y,z)f(x,y,z)	on	R3,	 the
gradient	∇f(x,y,z)∇f(x,y,z)	is	a	vector-valued	function	of	R3,	that	is,	its
value	at	a	point	(x,y,z)(x,y,z)	is	the	vector

∇f(x,y,z)=(∂f/∂x,∂f/∂y,∂f/∂z)

=∂f/∂x	i+∂f/∂y	j+∂f/∂zk

∇f(x,y,z)=(∂f/∂x,∂f/∂y,∂f/∂z)

=∂f/∂x	i+∂f/∂y	j+∂/f∂z	k

In	 R3,	 where	 each	 of	 the	 partial	 derivatives	 is	 evaluated	 at	 the
point	 (x,y,z)(x,y,z).	So,	 in	 this	way,	you	can	 think	of	 the	symbol	∇	 as
being	“applied”	to	a	real-valued	function	ff	to	produce	a	vector	∇f.

It	 turns	 out	 that	 the	 divergence	 and	 curl	 can	 also	 be	 expressed	 in
terms	of	the	symbol	∇.	This	is	done	by	thinking	of	∇	as	a	vector	in	R3,
namely

								∇=∂/∂x	i+∂/∂y	j+∂/∂z	k.

II)	Divergence

it	is	often	convenient	to	write	the	divergence	div	f	as	∇⋅f,	 since	 for	a
vector	field

	f(x,y,z)=f1(x,y,z)i+f2(x,y,z)j+f3(x,y,z)kf(x,y,z)

=f1(x,y,z)i+f2(x,y,z)j+f3(x,y,z)k,

	The	dot	product	of	f	with	∇	(thought	of	as	a	vector)	makes	sense:

∇⋅f=(∂/∂xi+∂/∂yj+∂/∂zk)⋅(f1(x,y,z)i+f2(x,y,z)j+f3(x,y,z)k)



=(∂/∂x)(f1)+(∂/∂y)(f2)+(∂/∂z)(f3)

=∂f1/∂x+∂f2/∂y+∂f3/∂z=

=div	f

III)	Curl	and	its	physical	interpretation:	The	curl	of	a	vector	field,
denoted	 	or	 	 (the	notation	used	 in	 this	work),	 is	 defined	as
the	vector	field	having	magnitude	equal	to	the	maximum	"circulation"
at	 each	 point	 and	 to	 be	 oriented	 perpendicularly	 to	 this	 plane	 of
circulation	for	each	point.	More	precisely,	the	magnitude	of	 	is	the
limiting	value	of	circulation	per	unit	area.	Written	explicitly,

Physical	Interpretation:

The	curl	of	a	vector	field	measures	the	tendency	for	the	vector	field
to	swirl	around.	Imagine	that	the	vector	field	represents	the	velocity
vectors	of	water	in	a	lake.	If	the	vector	field	swirls	around,	then	when
we	stick	a	paddle	wheel	into	the	water,	it	will	tend	to	spin.

Question:	What	is	the	various	types	of	charge	distributions?

Answer:

Type	of	charge	distribution Denoted	by Unit

Line	Charge λ	(Line	charge	density) C/m

Surface	Charge σ	 (surface	 charge
density)

C/m2

Volume	Charge ρ	(volume	charge	density) C/m3

	



Question:	 State	 the	 units	 of	 electric	 field	 intensity	 E	 and
explain	 the	 method	 of	 obtaining	 E	 at	 a	 point	 in	 Cartesian
system,	due	to	point	charge	Q.

Answer:	Electric	Field	Intensity	(E)	=	q/[4πεd2]	NC-1

Consider	a	point	charge	q	called	SOURCE	CHARGE	placed	at	a	point	‘O’
in	space.	To	find	its	intensity	at	a	point	‘p’	at	a	distance	‘r’	from	the	point
charge	we	place	a	test	charge	'q'.

	The	force	experienced	by	the	test	charge	q’	will	be:

	F	=	Eq’----(1)

	
According	 to	 coulomb's	 law	 the	 electrostatic	 force	 between	 them	 is
given	by:

	

	Putting	the	value	of	'F'	we	get	:	



	

									

									

		

	
This	 shows	 that	 the	 electric	 intensity	 due	 to	 a	 point	 charge	 is	 directly
proportional	to	the	magnitude	of	charge	q	and	inversely	proportional	to
the	square	of	distance

	

Question:	 Derive	 an	 expression	 for	 the	 capacitance
per	unit	length	of	a	coaxial	cable	with	permittivity	e,
inner	diameter	d	and	outer	diameter	D.

Answer:	Let	us	now	determine	the	capacitance	of	coaxially-arranged
conductors,	shown	in.

The	 structure	 as	 consisting	 of	 two	 concentric	 perfectly-conducting
cylinders	of	radii	aa	and	bb,	 separated	by	an	 ideal	dielectric	having
permittivity	ϵ	We	place	the	+z+z	axis	along	the	common	axis	of	 the
concentric	 cylinders	 so	 that	 the	 cylinders	 may	 be	 described	 as
constant-coordinate	surfaces	ρ=d	and	ρ=D



	

In	 this	 section,	 we	 shall	 find	 the	 capacitance	 by	 assuming	 a	 total
charge	 Q+Q+	 on	 the	 inner	 conductor	 and	 integrating	 over	 the
associated	 electric	 field	 to	 obtain	 the	 voltage	 between	 the
conductors.	 Then,	 capacitance	 is	 computed	 as	 the	 ratio	 of	 the
assumed	charge	to	the	resulting	potential	difference

The	first	step	is	to	find	the	electric	field	inside	the	structure.	This	is
relatively	 simple	 if	we	assume	 that	 the	 structure	has	 infinite	 length
(i.e.,	l→∞l→∞),	since	then	there	are	no	fringing	fields	and	the	internal
field	will	be	utterly	constant	with	respect	to	zz.	In	the	central	region
of	 a	 finite-length	 capacitor,	 however,	 the	 field	 is	 not	much	different
from	 the	 field	 that	 exists	 in	 the	 case	 of	 infinite	 length,	 and	 if	 the
energy	storage	in	fringing	fields	is	negligible	compared	to	the	energy
storage	in	this	central	region	then	there	is	no	harm	in	assuming	the
internal	 field	 is	 constant	with	zz.	 Alternatively,	we	may	 think	 of	 the
length	ll	as	pertaining	to	one	short	section	of	a	much	longer	structure
and	thereby	obtain	the	capacitance	per	length	as	opposed	to	the	total
capacitance.

To	determine	the	capacitance,



C≜Q+/V

Where	 Q+Q+	 is	 the	 charge	 on	 the	 positively-charged	 conductor
and	VV	is	the	potential	measured	from	the	negative	conductor	to	the
positive	 conductor.	 The	 charge	on	 the	 inner	 conductor	 is	 uniformly-
distributed	with	density

ρl=Q+/length

Which	 has	 units	 of	 C/m.	 Now	 we	 will	 determine	 the	 electric	 field
intensity	EE,	integrate	EE	over	a	path	between	conductors	to	get	VV,
=

“Electric	 Field	Due	 to	 an	 Infinite	 Line	Charge	 using	Gauss’	 Law,”
where	we	found

E=ρ^ρl2πϵsρ

This	is	a	consequence	of	Gauss’	Law

∮SD⋅ds=Qencl

			V=−∫CE⋅dl

)

Wrapping	up:

C≜Q+/V=ρll(ρl/2πϵs)ln(D/d)

Note	that	factors	of	ρlρl	 in	 the	numerator	and	denominator	cancel
out,	leaving:

C=2πϵsl	/	(ln(b/a))

	

	



Question:	 	 Discuss	 the	 Laplace’s	 and	 Poisson’s
equations

Answer:	
Laplace’s	 equation	 is	 a	 linear,	 homogeneous,	 partial	 differential
equation.	It	has	the	form:

∇2u=0

or	if	u∈Rn	then:

∂2u/∂x12+……....+∂2u/∂xn2=0

Poisson’s	 equation	 is	 simply	 the	 inhomogeneous	 version	 of
Laplace’s	equation.	That	means	it	is	of	the	form:

∂2u/∂x12+……....+∂2u/∂xn2=f(x1,...,xn)

for	u∈Rn

	f∈C(Rn)

As	 a	 final	 note	 I	 am	 not	 sure	 about	 whether	 there	 is	 an	 strict,
universal	 definition	 on	 the	 source	 function	 ff.	 I	 have	 gone	with	 the
one	I	have	seen	used	most	often	but	I	am	interested	if	anyone	knows
whether	there	are	ever	more	relaxed	requirements	for	f.

	

	

Question:	 	 Calculate	 the	 	 internal	 and	 external
inductance	 per	 unit	 length	 of	 a	 transmission	 line
consisting	 of	 two	 long	 parallel	 conducting	 wires	 of
radius	a	that	carry	current	in	opposite	directions	the
axes	 of	 the	 wires	 are	 separated	 by	 a	 distance	 d,



which	is	much	larger	than	a.

Answer:

	

Let	us	place	the	two	wires	in	the	x–z	plane	and	orient	the	current	in
one	of	them	to	be	along	the	+z-direction	and	the	current	in	the	other
one	 to	 be	 along	 the	 −z-direction,	 as	 shown	 in	 Fig.	 From	 Eq.,	 the
magnetic	field	at	point	P	=	(x,0,z)	due	to	wire	1	is

where	the	permeability	has	been	generalized	from	free	space	to	any
substance	with	permeability	µ,	and	it	has	been	recognized	that	in	the
x-z	plane,	ˆφ	=	yˆ	and	r	=	x	as	long	as	x	>	0.

Given	 that	 the	 current	 in	 wire	 2	 is	 opposite	 that	 in	 wire	 1,	 the
magnetic	 field	created	by	wire	2	at	point	P	=	 (x,0,z)	 is	 in	 the	 same
direction	as	that	created	by	wire	1,	and	it	is	given	by



	



	

Where	 the	 last	 approximation	 recognizes	 that	 the	 wires	 are	 thin
compared	to	the	separation	distance	(i.e.,	that	d	≫	a).	This	has	been
an	 implied	 condition	 from	 the	 beginning	 of	 this	 analysis,	where	 the
flux	passing	through	the	wires	themselves	have	been	ignored.

	

Question.	 Show	 that	 for	 a	 plane	 electromagnetic
wave	in	free	space,	the	unit	vector	in	the	direction	of
propagation,	 the	 electric	 field	 vector	 and	 magnetic
field	vector	are	mutually	perpendicular



Answer:

Assume	the	Gaussian	surface	to	be	the	surface	of	a	rectangular	box
whose	 cross-section	 is	 a	 square	 of	 side	 l	 and	 whose	 third	 side	 has
length	Δx,	as	shown	in	Figure.	Because	the	electric	field	is	a	function
only	of	x	and	t,	 the	y-component	of	 the	electric	 field	 is	 the	same	on
both	the	top	(labeled	Side	2)	and	bottom	(labeled	Side	1)	of	the	box,
so	that	these	two	contributions	to	the	flux	cancel.	The	corresponding
argument	 also	 holds	 for	 the	 net	 flux	 from	 the	 z-component	 of	 the
electric	field	through	Sides	3	and	4.	Any	net	flux	through	the	surface
therefore	 comes	entirely	 from	 the	 x-component	 of	 the	 electric	 field.
Because	 the	 electric	 field	 has	 no	 y-	 or	 z-dependence,	 Ex(x,t)	 is
constant	 over	 the	 face	 of	 the	 box	 with	 area	 A	 and	 has	 a	 possibly
different	value	Ex(x+Δx,t)	 that	 is	 constant	over	 the	opposite	 face	of
the	box.

Applying	Gauss’s	law	gives

Net	flux=−Ex(x,t)A+Ex(x+Δx,t)A=Qinε0

Where	 A=l×l	 is	 the	 area	 of	 the	 front	 and	 back	 faces	 of	 the
rectangular	 surface.	 But	 the	 charge	 enclosed	 is	 Qin=0,	 so	 this
component’s	 net	 flux	 is	 also	 zero,	 and	 Equation	 implies
Ex(x,t)=Ex(x+Δx,t)	for	any	Δx.	Therefore,	 if	there	is	an	x-component
of	the	electric	field,	it	cannot	vary	with	x.	A	uniform	field	of	that	kind
would	 merely	 be	 superposed	 artificially	 on	 the	 traveling	 wave,	 for
example,	 by	 having	 a	 pair	 of	 parallel-charged	 plates.	 Such	 a
component	 Ex(x,t)	 would	 not	 be	 part	 of	 an	 electromagnetic	 wave
propagating	 along	 the	 x-axis;	 so	Ex(x,t)=0	 for	 this	wave.	 Therefore,
the	 only	 nonzero	 components	 of	 the	 electric	 field	 are	 Ey(x,t)	 and
Ez(x,t),	perpendicular	to	the	direction	of	propagation	of	the	wave.



	

A	similar	argument	holds	by	substituting	E	 for	B	and	using	Gauss’s
law	 for	 magnetism	 instead	 of	 Gauss’s	 law	 for	 electric	 fields.	 This
shows	 that	 the	 B	 field	 is	 also	 perpendicular	 to	 the	 direction	 of
propagation	 of	 the	 wave.	 The	 electromagnetic	 wave	 is	 therefore	 a
transverse	 wave,	 with	 its	 oscillating	 electric	 and	 magnetic	 fields
perpendicular	to	its	direction	of	propagation.

	

Question.	What	 is	 intrinsic	 impedance?	Drive	an	expression	 for
it.	A	plane	polarized	wave	is	travelling	along	z-axis

Answer:

The	intrinsic	 impedance	is	a	property	of	a	medium	-	an	area	of	space.



For	 a	 vacuum	 (outer	 space)	 or	 for	 wave	 propagation	 through	 the	 air
around	earth	(often	called	 'free	space'),	 the	 intrinsic	 impedance	(often
written	as	 	or	Z)	is	given	by:

	=

This	 parameter	 is	 the	 ratio	 of	 the	 magnitude	 of	 the	 E-field	 to	 the
magnitude	 of	 the	H-field	 for	 a	 plane	wave	 in	 a	 lossless	medium	 (zero
conductivity):

This	 relation	 can	be	derived	directly	 from	Maxwell's	Equations.	For	 a
general	 medium	 with	 permittivity	 and	 permeability	 given	 by	

,	the	intrinsic	impedance	is	given	by:

For	 a	 medium	 with	 a	 conductivity	 	 associated	 with	 it,	 the	 intrinsic
impedance	is	given	by:

When	 the	conductivity	 is	non-zero,	 the	above	 intrinsic	 impedance	 is	 a
complex	 number,	 indicating	 that	 the	 electric	 and	 magnetic	 fields	 are
not	in-phase.

The	 intrinsic	 impedance	 of	 free-space	 has	 nothing	 to	 do	 with	 the
electrical	impedance	of	an	antenna.	Also,	there	is	no	reason	to	have	the
impedance	of	an	antenna	match	the	 intrinsic	 impedance	of	 free	space



(no	mismatch	loss	occurs).

	

	

	

Question.	What	 is	 the	 characteristics	 impedance	 of
transmission	line?	Derive	its	expression.

Answer:

Any	 media	 that	 can	 support	 a	 electromagnetic	 wave	 has	 a
characteristic	 impedance	 associated	with	 it.	 Although	 characteristic
impedance	 units	 are	 in	Ohms,	 it	 is	 not	 a	 "real"	 impedance	 you	 can
measure	 using	 direct	 current	 equipment	 such	 as	 a	 DC	 Ohmmeter.
And	 although	 transmission	 lines	 have	 real	 loss	 at	 microwave
frequencies,	this	isn't	what	we're	talking	about	either.

The	best	way	 to	 think	about	characteristic	 impedance	 it	envision	an
infinitely	 long	 transmission	 line,	which	means	 that	 there	will	 be	 no
reflections	 from	 the	 load.	 Placing	 an	 alternating	 current	 voltage
Vin(t)	 will	 result	 in	 a	 current	 Iin(t).	 The	 impedance	 of	 the
transmission	line	is	then:

Sounds	simple	enough,	but	unless	you	are	dealing	with	"free	space",
there	is	no	transmission	line	that	is	infinitely	long.	But	that	equation
is	starting	to	look	like	a	version	of	Ohm's	law,	where	R=V/I.



let's	 look	at	the	general	equivalent	circuit	of	an	infinitesimally	small
piece	of	 a	 transmission	 line.	All	 circuits	elements	are	normalized	 to
length	in	transmission	line	models;	in	the	metric	system	the	units	are
Ohms/meter,	 Farads/meter,	 mhos/meter	 and	 Henries	 per	 meter,	 we
will	use	the	"prime"	notation	when	we	are	discussing	quantities	that
are	normalized	per	unit	length.

	

The	T-line	model	is	repeated	infinite	times	along	the	length	of	a	real
transmission	line.	Hmm,	this	is	starting	to	sound	like	calculus,	which
we	 have	 pledged	 to	 avoid	 on	Microwaves101.	 And	we	will,	 so	we'll
stop	 with	 this	 one	 section.	 For	 microwave	 engineers,	 the	 general
expression	that	defines	characteristic	impedance	is:

Here	R',	G',	 L'	 and	C'	 are	normalized	 to	 length,	 the	 same	as	 in	 the
model.	Note	that	in	its	general	form,	characteristic	impedance	can	be
a	complex	number.	Also	note	that	it	only	becomes	complex	if	either	R'
or	G'	are	non-zero,	which	will	give	you	a	headache	if	you	think	about
it	too	long.	In	practice	we	try	to	achieve	nearly	lossless	transmission



lines.	For	a	low-loss	transmission	line,	the	following	relationships	will
occur:

Then	for	all	practical	purposes	we	can	ignore	the	contributions	of	R'
and	G'	 from	the	equation	and	end	up	with	a	nice	scalar	quantity	for
characteristic	 impedance.	 For	 lossless	 transmission	 lines	 the
transmission	line	model	reduces	to	this:

	

and	 the	 more	 familiar	 equation	 for	 characteristic	 impedance	 is
simply:

L'	 is	 the	 tendency	 of	 a	 transmission	 line	 to	 oppose	 a	 change	 in
current,	while	C'	 is	 the	 tendency	of	 a	 transmission	 line	 to	oppose	a
change	 in	 voltage.	 Characteristic	 impedance	 is	 a	 measure	 of	 the
balance	between	the	two.
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