## Aryabhatta Knowledge University (AKU)

## Electronics and electrical engineering (ECE)

## Mathematics-III

## Solved Exam Paper 2019

## Q (1) A) what is the Wavelet transform?

Wavelet transform:--
In mathematics, a wavelet series is a representation of a square integrable function by a certain ortho normal series generated by a wavelet.

A function y Î L ${ }^{2}$ is called an orthonormal wavelet if it can be used to define a Hilbert basis that is a complete orthonormal system. For the Hilbert space $L^{2}(R)$ of square integrable function.

The Hilbert basis is constructed as the family of Function $\left\{\mathrm{y}_{\mathrm{jk}}: \mathrm{j}, \mathrm{kî} \mathrm{z}\right\}$
$y_{j k}(x)=2^{j / 2} y\left(2^{j} x-k\right)$
for integers j,k î z
If under the standard inner product on $L^{2}(R)$
$(\mathrm{f}, \mathrm{g})=\int_{-\infty}^{+\infty} f(x) g(x) d x$
this family is orthonormal
Completeness is satisfied if every function
f $\hat{I} L^{2}(R)$ may be expanded in the basis of

$$
\mathrm{f}(\mathrm{x})=\sum_{j k=-\infty}^{+\infty} \mathrm{C}_{\mathrm{jk}} \mathrm{y}_{\mathrm{jk}}(\mathrm{x})
$$

with convergence of the series understood to be convergence in norm.

Such a representation of $f$ is known as a wavelet series.
The integral wavelet transform is defined as
$\left[\mathrm{W}_{\mathrm{y}} \mathrm{f}\right](\mathrm{a}, \mathrm{b})=1 / \mathrm{O}|\mathrm{a}| \int_{-\infty}^{+\infty} \Psi(\Gamma-b) / a f(x) d x$
The wavelet coefficient $C_{j, k}$ are then given by
$\mathrm{C}_{\mathrm{j}, \mathrm{k}}=\left[\mathrm{W}_{\mathrm{y}} \mathrm{f}\right]\left(2^{-\mathrm{j}}, \mathrm{k} 2^{-\mathrm{j}}\right)$
Here, $\mathrm{a}=2^{-\mathrm{j}}$ is called the binary dilation
$\& \mathrm{~b}=\mathrm{k} 2^{-\mathrm{j}}$ is the binary position

[^0]Proof :
Let $(\mathrm{a}, \mathrm{b}) \mathrm{I} \mathrm{A}$ * (BU C)
$=>$ a Î A and b Î (BU C)
$=>$ a ÎA and $\{$ b Î B or b Î C $\}$
$=>\{a$ Î A and b Î B $\}$ or $\{\mathrm{a}$ Î A and b Î C $\}$
$=>(a, b) \hat{I}(A * B) U(A * C)$
$\backslash(a, b) \hat{I} A *(B U C)=>(a, b) \hat{I}(A * B) U(A * C)$
$\backslash \mathrm{A} *(\mathrm{~B} \mathrm{UC}) \mathrm{I}(\mathrm{A} * \mathrm{~B}) \mathrm{U}(\mathrm{A} * \mathrm{C})$
Again, Let ( $\mathrm{x}, \mathrm{y}$ ) $\hat{\mathrm{I}}(\mathrm{A} * \mathrm{~B}) \mathrm{U}(\mathrm{A} * \mathrm{C})$
$=>(x, y) \hat{I}(A * B)$ or $(x, y) \hat{I}(A * C)$
$=>\{x$ Î A and y it B\} ~ o r ~ $\{x \hat{I} A$ and y Î C $\}$
$=>x$ Î A and yî (B UC)
$=>(\mathrm{x}, \mathrm{y}) \mathrm{Î} \mathrm{A} *(\mathrm{~B}$ U C)
$\backslash(x, y) \hat{I}(A * B) U(A * C)=(x, y) \hat{I} A *(B U C)$
$\backslash(\mathrm{A} * \mathrm{~B}) \mathrm{U}(\mathrm{A} * \mathrm{C})$ Ii $\mathrm{A} *(\mathrm{~B} U \mathrm{C})$
Now from equation (1) \& (2) we get,
Hence,
$A *(B U C)=(A * B) U(A * C)$

Hence Proved.

Q (3) A)Discuss Skewness and Kurtosis for the fo frequency distribution:

| Marks | $0-10$ | $10-$ <br> 20 | $20-$ <br> 30 | $30-$ <br> 40 | $40-$ <br> 50 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. of <br> Students | 5 | 10 | 40 | 20 | 25 |

Answer: skewness of kurtosis :
Step 1: - To find mean x
class

0-10
$10-20$

20-30
25
40
1000

30-40
35
20
700

$$
N=a ̊ f=100 \quad \therefore \quad \mathrm{fx}=31
$$

\ $\mathrm{x}=\frac{\Sigma f x}{N}=\frac{3000}{100}$

$$
` \mathbf{x}=\mathbf{3 0}
$$

Step 2 : - To find central Moments :

$\mathrm{m}_{1}=\frac{\Sigma f(x-x)}{N}=\frac{0}{100}=0$
$\mathrm{m}_{2}=\frac{\Sigma f(x-x)^{2}}{N}=\frac{12500}{100}=125$
$\mathrm{m}_{3}=\frac{\Sigma f(x-x)^{3}}{N}=\frac{-30000}{100}=-300$
$\mathrm{m}_{4}=\frac{\Sigma f(x-x)^{4}}{N}=\frac{-30000}{100}=37625$
skewness b1 $=\frac{(13)^{2}}{(\mu 2)^{3}}=\frac{(-300)^{2}}{(125)^{3}}=0.046$
$\mathrm{b}_{1^{1}} 0$ Hence distribution is unsymmetrical
$\mathrm{b}_{2}=\frac{(\mu 4)}{(\mu 2)^{2}}=\frac{37625}{(125)^{2}}$
$=\mathbf{2 . 4 0 8}<3$
$\backslash \mathrm{b}_{2}<3=>$ Given distribution is Platy Kurtosis.

Q (3) B) In a partially destroyed laboratory recori analysis of a correlation data, the following results a eligible:

Variance of $x=9$

Regression equations:

## $40 x-18 y=214,8 x-10 y+66=0$

Find i) Mean values of $x$ and, $i i$ ) the standard deviat: and coefficient of correlation between $x$ and $y$ and $i i$. between the lines of regressions

Answer: Given Regression Equations are
$40 x-18 y=214$
(1) \&
$8 x-10 y+66=0$
(i) To find mean values of x and y

Put $\mathrm{x}=` \mathrm{x} \& \mathrm{y}=` \mathrm{y}$ in given regression equations.
\ 8 `\(x-10` y=-66\)

$$
40^{`} x-18 ` y=214
$$

by solving we get, ${ }^{`} \mathrm{x}=13$ \& $\mathrm{y}=17$
(ii) To find correlation

$$
r=0 ̈(b x y-b y x)
$$

solve equation (2) for x \& take of y as bxy
From equation (2) $=>8 x=10 y-66$

$$
x=\frac{10}{8} y-\frac{66}{8}
$$

$$
\backslash \mathbf{b x y}=\frac{10}{8}
$$

Solve equation (1) for y \& take coefficient of x as byx

$$
\begin{aligned}
& -18 y=214-40 x \\
& y=\frac{40}{18} x-\frac{214}{18}
\end{aligned}
$$

$\backslash \mathbf{b y x}=\frac{40}{18}$
[ check : bxy . Byx <= 1
If not then swap x $<->y$ y Num <--> Dero bxy.byx $=\left(\frac{10}{8}\right)\left(\frac{40}{18}\right)=2.77>1$
\swap x <--> y \& Num <--> Dero
$\left.b y x=\frac{8}{10} \& \quad b x y=\frac{18}{40} \quad\right]$
$\backslash_{i}=\ddot{O}(b x y . b y x)=O ̈\left(\left(\frac{18}{40}\right)\left(\frac{8}{10}\right)\right)=\mathbf{0 . 6}$
(iii) $\operatorname{Var}(\mathrm{x})=9 \quad \& \operatorname{var}(\mathrm{y})=$ ?
$\backslash$ byx $=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}$
$\frac{8}{10}=\frac{\operatorname{cov}(x, y)}{9}$
$\operatorname{cov} .(\mathrm{x}, \mathrm{y})=\frac{72}{10}$
$\backslash \mathrm{bxy}=\frac{\operatorname{cov},(x, y)}{\operatorname{var}(y)}$
$\frac{18}{40}=\frac{72}{10} / \operatorname{var}(\mathrm{y})$

## $\backslash \operatorname{var}(\mathrm{y})=16$

$s_{y}=$ std. Deviation of $\mathrm{y}=$ Övar(y)
= Ö16

$$
s_{y}=4
$$

$s_{x}=\ddot{O} \operatorname{var}(\mathrm{x})=0 ̈ 9=3$

$$
\backslash s_{x}=3
$$

(iii) Angle between the lines of regression

$$
\operatorname{tanq}=\left(\frac{1-r^{2}}{r}\right)\left(\frac{\sigma x-\sigma y}{\sigma x^{2}+\sigma y^{2}}\right)
$$

$$
\begin{aligned}
& =\left(\frac{1-(0.6)^{2}}{0.6}\right)\left(\frac{3.4}{9+16}\right) \\
& =\left(\frac{1-0.36}{0.6}\right)\left(\frac{12}{25}\right)
\end{aligned}
$$

$\operatorname{tanq}=0.512$
$\backslash \mathrm{q}=\mathbf{0 . 4 7 ^ { 0 }}$
$Q$ (4) A) Find the mean and variance of b distribution.

Answer: (A) Mean of Binomial Distribution

$$
\begin{aligned}
\text { Mean }=\mathrm{E}(\mathrm{x}) & =\sum_{x=0}^{n} x \cdot p(x) \\
& =\sum_{x=0}^{n} x \mathrm{ncx} \cdot \mathrm{P}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}} \\
& =\sum_{x=0}^{n} x_{\frac{n!}{(n-x)!x!}} \mathrm{P}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}} \\
& =\sum_{x=0}^{n} x_{(n-x)!\times x(x-1)!}^{n!} \mathrm{P}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}} \\
& =\sum_{x=0}^{n} x_{\overline{[(n-1)-(x-1)]!(x-1)!!\times q[(n-1)-(x-1)]}}\left(\mathrm{p} \cdot \mathrm{p}^{\mathrm{x}-1}\right) \\
= & \mathrm{np} \sum_{x=0}^{n} x_{[(n-1)-(x-1)]!(x-1)!\cdot q[(n-1)-(x-1)]} \mathrm{p}^{\mathrm{x}-1}
\end{aligned}
$$

$$
=n p(p+q)^{n-1}
$$

$$
=>\quad(p+q=1)
$$

$$
=n p(1)^{\mathrm{n}-1}
$$

Mean $=\mathbf{n p}$
(B) Variance of Binomial Distribution

Variance $s x^{2}=E\left(x^{2}\right)-[E(x)]^{2}$
$\backslash \mathrm{E}\left(\mathrm{x}^{2}\right)=\sum_{x=0}^{n} x^{2} p(x)$

$$
=\sum_{x=0}^{n}[x+(x-1) x] p(x)
$$

$$
=\sum_{x=0}^{n} x p(x)+\sum_{x=0}^{n}(x-1) x p(x)
$$

$$
=\mathrm{np}+\sum x(x-1) \mathrm{ncx} \mathrm{P}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}}
$$

$$
=\mathrm{np}+\sum x(x-1)_{(n-x)[x!}^{n!} \cdot \mathrm{p}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}}
$$

$$
=\mathrm{np}+\sum x(x-1) \frac{n!}{(n-x)!x(x-1)!} \mathrm{P}^{\mathrm{x}} \cdot \mathrm{q}^{\mathrm{n}-\mathrm{x}}
$$

$$
=\mathrm{np}+\sum\left(\frac{n(n-1)(n-2)!}{[(n-2)!\times(x-2)]!(x-2)!}\right) \mathrm{p}^{2} \cdot \mathrm{p}^{\mathrm{x}-2} * \mathrm{q}^{[(\mathrm{n}-2)-(\mathrm{x}-2)]}
$$

$$
=\mathrm{np}+\mathrm{n}(\mathrm{n}-1) \mathrm{p}^{2} \sum\left(\frac{(n-2)!+p^{(x-2)}+q^{(1(n-2)-(x-2)]}}{[(n-2)-(x-2)]!(x-2)!}\right)
$$

$$
=n p+n(n-1) p^{2}(p+q)^{2}
$$

$$
=>\quad(p+q=1)
$$

$=n p+n^{2} p^{2}-n p^{2}(1)^{n-2}$
$\mathrm{E}\left(\mathrm{x}^{2}\right)=\mathrm{np}+\mathrm{n}^{2} \mathrm{p}^{2}-\mathrm{n} \mathrm{p}^{2}$
|variance $\left(s^{2}\right)=E\left(x^{2}\right)-[E(x)]^{2}$

$$
\begin{aligned}
& =n p+n^{2} p^{2}-n p^{2}-(n p)^{2} \\
& =n p+n^{2} p^{2}-n p^{2}-n^{2} p^{2} \\
& =n p(1-p) \quad=>(q=1-p)
\end{aligned}
$$

## Variance $=\mathbf{n p q}$

Q (4) B) The probability of pen manufactured by a ci
will be defective is $\mathbf{1 / 1 0}$. If $\mathbf{1 2}$ such pens are manufa Find the probability that i) exactly two will be defec at least two will be defective and iii) none will be effe

Answer: Total number of pens (n) $=12$
Probability of a defective pen $\mathrm{p}=\frac{1}{10}=0.1$
Probability of a non-defective pen $q=1-p=0.9$

$$
[\approx>(p+q=1)]
$$

(a) Probability that exactly two will be defective

$$
\begin{aligned}
& \mathrm{p}(\mathrm{r})=\mathrm{ncr} \mathrm{p}^{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}} \\
& \begin{aligned}
\backslash \mathrm{p}(2)= & 12 \mathrm{c} 2(0.1)^{2}(0.9)^{12-2} \\
& =\frac{12!}{2!10!}(0.1)^{2}(0.9)^{10}
\end{aligned}
\end{aligned}
$$

$\backslash p(2)=0.2301$
(b) Probability that none will be defective

$$
\begin{aligned}
p(0) & =12 c 0(0.1)^{0}(0.9)^{12} \\
& =1^{*} 1^{*}(0.9)^{1}
\end{aligned}
$$

$p(0)=0.2824$
(c)Probability that atleast two will be defective

$$
p(2)+p(3)+p(4)+\ldots \ldots .+p(12)=1-[p(0)+p(1)]
$$

$$
\begin{aligned}
& =1-\left[0.2824+12 \mathrm{c} 1(0.1)^{1}(0.9)^{11}\right] \\
& =1-[0.2824+0.3766]
\end{aligned}
$$

$$
=\mathbf{0 . 3 4 1 0}
$$

Q (5) A) In a test of 2000 electric bulbs it was found that the life of a particular make was normally distributed with an average life of 2040 hours and SD of 60 hours. Estimate the number of bulbs likely to burn for i) more than 2150 hours, ii) less than 1950 hours, and iii) more than 1950 hours and less than 2160 hours.

Answer: Given $m=2040$ \& $s=60$
(i) For $\mathrm{x}=2150$
$\mathrm{z}=\frac{x-\mu}{\sigma}=\frac{2150-2040}{60}$

$$
=1.83
$$

Area against $\mathrm{z}=1.83$ from Table $=0.4664$

Required area $=0.5-0.4664$

$$
=0.0336
$$

\The no. Of bulbs likely to burn for more than 2150 has

$$
\begin{aligned}
=0.0336 * 2000 & =67.2 \\
& » 67 \text { bulbs }
\end{aligned}
$$

(ii) Less than 1950
for $\mathrm{x}=1950$
$\mathrm{z}=\frac{x-\mu}{\sigma}=\frac{1950-2040}{60}=-1.5$
Area against $\mathrm{z}=-1.5$ from Table $=0.4332$
Required area $=0.5-0.4332$
$=0.668$
\The no. Of bulbs likely to burn for less than 1950 has
$=0.668 * 2000$
$=153.6$
»153 bulbs
(iii) when $\mathrm{x}=1950$

$$
\begin{aligned}
\mathrm{z} & =\frac{1950-2040}{60} \\
& =-1.5
\end{aligned}
$$

when $\mathrm{x}=2160$
$\mathrm{z}=\frac{2160-2040}{60}=2$
$\mathrm{p}(-1.5<=\mathrm{z}<=2)$
$\mathrm{p}(>=1.5) \quad=$ Required Area

$$
=0.4332
$$

$\& \mathrm{p}(\mathrm{z}<=2) \quad=$ Required Area

$$
=0.4772
$$

$\backslash \mathrm{p}(-1.5<=\mathrm{z}<=2)=0.4332+0.4772$

## $=0.9104$

\The no. Of bulbs likely to burn for more than 1950 hours but less than 2160 hours
$=0.9104 * 2000=1820.8$
» 1820 bulbs

Q(5) B) Find the curve of best fit of the type $y=a$ following data by method of least square:

| $\mathbf{x}$ | 1 | 5 | 7 | 9 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{y}$ | 10 | 15 | 12 | 15 | 21 |

Answer: Given curve $\mathrm{y}=\mathrm{ae}^{\mathrm{bx}}$
take log on both sides
$\log \mathrm{y}=\log \mathrm{a}+\log \mathrm{e}^{\mathrm{bx}}$
$\backslash \log \mathrm{y}-\log \mathrm{a}+\mathrm{bx} \log \mathrm{e}$
$\backslash \mathrm{Y}=\mathrm{A}+\mathrm{Bx}$
$\Sigma \mathrm{Y}=\mathrm{nA}+\mathrm{B} \Sigma \mathrm{x}$

| x | y | $\mathrm{Y}=\log \mathrm{y}$ | $\mathrm{x}^{2}$ | xY |
| :--- | :--- | :---: | :---: | :---: |
| 1 | 15 | 1.18 | 25 | 5.9 |
| 7 | 12 | 1.08 | 49 | 7.5 |
| 7 | 15 | 1.18 | 81 | 10. |
| 12 | 21 | 1.32 | 144 | 15. |

$\Sigma \mathrm{x}=34$
$\Sigma \mathrm{Y}=5.76$
$\Sigma \mathrm{x}^{2}=300$
$\Sigma \mathrm{xY}$ :
$\Sigma \mathrm{xY}=\mathrm{A} \Sigma \mathrm{x}+\mathrm{B} \Sigma \mathrm{x}^{2}$
put in Equation (1) \& (2)
$\backslash 5.76=5 \mathrm{~A}+34(\mathrm{~B})$

## $40.92=34 \mathrm{~A}+300(\mathrm{~B})$

by Solving we get,
$\mathrm{A}=0.98$
$B=0.025$
$\backslash \log \mathrm{a}=\mathrm{A}$
$\backslash \mathrm{a}=10^{0.98}=9.55$
$\operatorname{loge}(\mathrm{b})=\mathrm{B}=>\mathrm{b}=1.06$
$y=a e^{b x}$
$y=9.5 \mathbf{e}^{1.06 x}$

## || Go seeko $^{\text {Sen }} /$

Visit www.goseeko.com to access free study material as per your university syllabus


[^0]:    $Q$ (2) B) For any three sets $A, B, C$ prove that $A x(B$ (AxB)U(AxC)

    Answer: To prove : A * $(\mathrm{B} \mathrm{U} \mathrm{C})=(\mathrm{A} * \mathrm{~B}) \mathrm{U}(\mathrm{A} * \mathrm{C})$

